A323542 a(n) = Product_{k=0..n} (k^4 + (n-k)^4).
0, 1, 512, 1896129, 14101250048, 242755875390625, 7888809923487203328, 452522453429009743939201, 42521926771106843499966758912, 6212193882217859346149080691430849, 1350441156698962215630405632000000000000, 421551664651621436548685508587919503984205889
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..125
Crossrefs
Programs
-
Magma
[(&*[(k^4 + (n-k)^4): k in [0..n]]): n in [0..15]]; // Vincenzo Librandi, Jan 18 2019
-
Mathematica
Table[Product[k^4+(n-k)^4, {k, 0, n}], {n, 0, 15}]
-
PARI
m=4; vector(15, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
-
Sage
m=4; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..15)] # G. C. Greubel, Jan 18 2019
Formula
a(n) ~ exp((Pi*(sqrt(2) - 1/2) - 4)*n) * n^(4*n + 4).
Comments