cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A323543 a(n) = Product_{k=0..n} (k^5 + (n-k)^5).

Original entry on oeis.org

0, 1, 2048, 64304361, 3995393327104, 775913238525390625, 320224500476333990608896, 273342392644434762426370643281, 429621172463958849019228299940855808, 1175198860360296464427314161342724729270241, 5278148679274118560000000000000000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 17 2019

Keywords

Crossrefs

Cf. 2*A000539 (with sum instead of product).

Programs

  • Magma
    [(&*[(k^5 + (n-k)^5): k in [0..n]]): n in [0..12]]; // Vincenzo Librandi, Jan 18 2019
    
  • Mathematica
    Table[Product[k^5+(n-k)^5, {k, 0, n}], {n, 0, 12}]
  • PARI
    m=5; vector(12, n, n--; prod(k=0,n, k^m +(n-k)^m)) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    m=5; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..12)] # G. C. Greubel, Jan 18 2019

Formula

a(n) ~ exp((2*Pi*sqrt(5 - 2/sqrt(5))/5 - 4)*n) * n^(5*n+5).

A272244 a(n) = Product_{k=0..n} (n^2 + k^2).

Original entry on oeis.org

0, 2, 160, 21060, 4352000, 1313845000, 547573478400, 301758856490000, 212663770808320000, 186659516597629140000, 199722414913149440000000, 255947740845844788169000000, 387074162712817024892928000000, 682170272459193898736228210000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[n^2+k^2,{k,0,n}],{n,0,15}]

Formula

a(n) ~ 2^(n + 1/2) * n^(2*(n+1)) / exp((4-Pi)*n/2).

A324438 a(n) = Product_{i=1..n, j=1..n} (i^5 + j^5).

Original entry on oeis.org

1, 2, 139392, 305013568273920000, 1174837791623127613548781790822400000000, 139642003782073074626249921818187528362524804267528306032640000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^5 + j^5, i=1..n), j=1..n):
    seq(a(n), n=0..5);  # Alois P. Heinz, Nov 26 2023
  • Mathematica
    Table[Product[i^5 + j^5, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
  • Python
    from math import prod, factorial
    def A324438(n): return prod(i**5+j**5 for i in range(1,n) for j in range(i+1,n+1))**2*factorial(n)**5<Chai Wah Wu, Nov 26 2023

Formula

a(n) ~ c * 2^(2*n*(n+1)) * phi^(sqrt(5)*n*(n+1)) * exp(Pi*sqrt(phi)*n*(n+1)/5^(1/4) - 15*n^2/2) * n^(5*n^2 - 5/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and c = 0.1574073828647726237455544898360432469056972905505624900871695...
a(n) = A367679(n) * A079478(n). - Vaclav Kotesovec, Nov 26 2023
For n>0, a(n)/a(n-1) = A272248(n)^2 / (2*n^15). - Vaclav Kotesovec, Dec 02 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 26 2023

A272246 a(n) = Product_{k=0..n} (n^3 + k^3).

Original entry on oeis.org

0, 2, 1152, 1428840, 3488808960, 15044494500000, 105235903511101440, 1119277024472896248960, 17216259547948971039129600, 368066786222106315186876633600, 10591209807103301277597696000000000, 399472472359100444604916002033020774400
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[n^3+k^3,{k,0,n}],{n,0,12}]

Formula

a(n) ~ 2^(2*n + 1/2) * n^(3*n + 3) / exp((3 - Pi/sqrt(3))*n).

A272247 a(n) = Product_{k=0..n} (n^4 + k^4).

Original entry on oeis.org

0, 2, 8704, 104372388, 3087748038656, 194985808028125000, 23467500289618753093632, 4938279594477505466022892304, 1699491802948673617630927695904768, 907214902722906584628050661111614570016, 719684491044699824651608981274624000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[n^4+k^4,{k,0,n}],{n,0,10}]

Formula

a(n) ~ 2^(n+1/2) * (1+sqrt(2))^(sqrt(2)*n) * n^(4*n + 4) / exp((4 - Pi/sqrt(2))*n).

A367823 a(n) = Product_{k=0..n} (n^6 + k^6).

Original entry on oeis.org

0, 2, 532480, 615291760980, 2759348178649088000, 38607000141072009765625000, 1421393314362014000255258433945600, 120987688662917113214734283836109985530000, 21538956798613753302336535534471908360548515840000, 7407676630843157974199152503244776880017496531101658740000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 02 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[n^6 + k^6, {k, 0, n}], {n, 0, 10}]
  • PARI
    a(n) = prod(k=0, n, n^6 + k^6); \\ Michel Marcus, Dec 02 2023

Formula

a(n) ~ 2^(n + 1/2) * (2 + sqrt(3))^(sqrt(3)*n) * n^(6*n + 6) / exp((6 - Pi)*n).

A367833 a(n) = Product_{k=0..n} (n^8 + k^8).

Original entry on oeis.org

0, 2, 33685504, 3851231199376068, 2670340833224951538384896, 8442437541556000328575439453125000, 96982590530284083757788173242580213780447232, 3406021755102121469537208768079471859185253483110025744
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 02 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[n^8 + k^8, {k, 0, n}], {n, 0, 10}]

Formula

a(n) ~ 2^(n + 1/2) * ((2 + sqrt(2 + sqrt(2)))/(2 - sqrt(2 + sqrt(2))))^(sqrt(2 + sqrt(2))*n/2) * (sqrt(2) - 1 + sqrt(4 - 2*sqrt(2)))^(sqrt(2 - sqrt(2))*n) * exp((Pi/sqrt(2 - sqrt(2)) - 8)*n) * n^(8*(n + 1)).
Showing 1-7 of 7 results.