cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A324403 a(n) = Product_{i=1..n, j=1..n} (i^2 + j^2).

Original entry on oeis.org

1, 2, 400, 121680000, 281324160000000000, 15539794609114833408000000000000, 49933566483104048708063697937367040000000000000000, 19323883089768863178599626514889213871887405416448000000000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 26 2019

Keywords

Comments

Next term is too long to be included.

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^2+j^2, i=1..n), j=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[i^2+j^2, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
  • PARI
    a(n) = prod(i=1, n, prod(j=1, n, i^2+j^2)); \\ Michel Marcus, Feb 27 2019
    
  • Python
    from math import prod, factorial
    def A324403(n): return (prod(i**2+j**2 for i in range(1,n) for j in range(i+1,n+1))*factorial(n))**2<Chai Wah Wu, Nov 22 2023

Formula

a(n) ~ 2^(n*(n+1) - 3/4) * exp(Pi*n*(n+1)/2 - 3*n^2 + Pi/12) * n^(2*n^2 - 1/2) / (Pi^(1/4) * Gamma(3/4)).
a(n) = 2*n^2*a(n-1)*Product_{i=1..n-1} (n^2 + i^2)^2. - Chai Wah Wu, Feb 26 2019
For n>0, a(n)/a(n-1) = A272244(n)^2 / (2*n^6). - Vaclav Kotesovec, Dec 02 2023
a(n) = exp(2*Integral_{x=0..oo} (n^2/(x*exp(x)) - (cosh(n*x) - cos(n*x))/(x*exp((n + 1)*x)*(cosh(x) - cos(x)))) dx)/2^(n^2). - Velin Yanev, Jun 30 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A324437 a(n) = Product_{i=1..n, j=1..n} (i^4 + j^4).

Original entry on oeis.org

1, 2, 18496, 189567553208832, 53863903330477722171391434817536, 4194051697335929481600368256016484482740174637152337920000, 530545265060440849231458462212366841894726534233233018777709463062563850450708386692464640000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^4+j^4, i=1..n), j=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[i^4 + j^4, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
  • Python
    from math import prod, factorial
    def A324437(n): return (prod(i**4+j**4 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**2)**2<Chai Wah Wu, Nov 26 2023

Formula

a(n) ~ c * 2^(n*(n+1)) * exp(Pi*n*(n+1)/sqrt(2) - 6*n^2) * (1 + sqrt(2))^(sqrt(2)*n*(n+1)) * n^(4*n^2 - 1), where c = A306620 = 0.23451584451404279281807143317500518660696293944961...
For n>0, a(n)/a(n-1) = A272247(n)^2 / (2*n^12). - Vaclav Kotesovec, Dec 01 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A324426 a(n) = Product_{i=1..n, j=1..n} (i^3 + j^3).

Original entry on oeis.org

1, 2, 2592, 134425267200, 3120795915109442519040000, 180825857777547616919759624941086965760000000, 99356698720512072045648926659510730227553351200000695922065408000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^3+j^3, i=1..n), j=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[i^3+j^3, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
  • PARI
    a(n) = prod(i=1, n, prod(j=1, n, i^3+j^3)); \\ Michel Marcus, Feb 27 2019
    
  • Python
    from math import prod, factorial
    def A324426(n): return prod(i**3+j**3 for i in range(1,n) for j in range(i+1,n+1))**2*factorial(n)**3<Chai Wah Wu, Nov 26 2023

Formula

a(n) ~ A * 2^(2*n*(n+1) + 1/4) * exp(Pi*(n*(n+1) + 1/6)/sqrt(3) - 9*n^2/2 - 1/12) * n^(3*n^2 - 3/4) / (3^(5/6) * Pi^(1/6) * Gamma(2/3)^2), where A is the Glaisher-Kinkelin constant A074962.
a(n) = A079478(n) * A367543(n). - Vaclav Kotesovec, Nov 22 2023
For n>0, a(n)/a(n-1) = A272246(n)^2 / (2*n^9). - Vaclav Kotesovec, Dec 02 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A367834 a(n) = Product_{i=1..n, j=1..n} (i^8 + j^8).

Original entry on oeis.org

1, 2, 67634176, 1775927682136440882473213952, 22495149450984565292579847926810488282934424886723006835982336
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 02 2023

Keywords

Comments

Next term is too long to be included.
For m > 0, Product_{j=1..n, k=1..n} (j^m + k^m) ~ c(m) * exp(n*(n+1)*s(m) - m*n*(n-2)/2) * n^(m*(n^2 - 1/4 - v)), where v = 0 if m > 1 and v = 1/6 if m = 1, s(m) = Sum_{j>=1} (-1)^(j+1)/(j*(1 + m*j)) and c(m) is a constant (dependent only on m). Equivalently, s(m) = log(2) - HurwitzLerchPhi(-1, 1, 1 + 1/m).
c(1) = A / (2^(1/12) * exp(1/12) * sqrt(Pi)).
c(2) = exp(Pi/12) * Gamma(1/4) / (2^(5/4) * Pi^(5/4)).
c(3) = A * 3^(1/6) * exp(Pi/(6*sqrt(3)) - 1/12) * Gamma(1/3)^2 / (2^(7/4) * Pi^(13/6)), where A = A074962 is the Glaisher-Kinkelin constant.
c(4) = A306620.

Crossrefs

Cf. A079478 (m=1), A324403 (m=2), A324426 (m=3), A324437 (m=4), A324438 (m=5), A324439 (m=6), A324440 (m=7).

Programs

  • Mathematica
    Table[Product[i^8 + j^8, {i, 1, n}, {j, 1, n}], {n, 0, 6}]
  • Python
    from math import prod, factorial
    def A367834(n): return (prod(i**8+j**8 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**4)**2<Chai Wah Wu, Dec 02 2023

Formula

For n>0, a(n)/a(n-1) = A367833(n)^2 / (2*n^24).
a(n) ~ c * 2^(n*(n+1)) * (1 + 1/(sqrt(1 - 1/sqrt(2)) - 1/2))^(sqrt(2 + sqrt(2))*n*((n+1)/2)) * (1 + 1/(sqrt(1 + 1/sqrt(2)) - 1/2))^(sqrt(2 - sqrt(2))*n*((n+1)/2)) * (n^(8*n^2 - 2) / exp(12*n^2 - Pi*sqrt(1 + 1/sqrt(2))*n*(n+1))), where c = 0.043985703178712025347328240881106818917398444790454628282522057393529338998...

A324439 a(n) = Product_{i=1..n, j=1..n} (i^6 + j^6).

Original entry on oeis.org

1, 2, 1081600, 528465082730906880000, 29276520893554373473343522853366005760000000000, 5719545329208791496596894540018824083491259163047733746620041978183680000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^6 + j^6, i=1..n), j=1..n):
    seq(a(n), n=0..5);  # Alois P. Heinz, Nov 26 2023
  • Mathematica
    Table[Product[i^6 + j^6, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
  • Python
    from math import prod, factorial
    def A324439(n): return (prod(i**6+j**6 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**3)**2<Chai Wah Wu, Nov 26 2023

Formula

a(n) ~ c * 2^(n*(n+1)) * (2 + sqrt(3))^(sqrt(3)*n*(n+1)) * exp(Pi*n*(n+1) - 9*n^2) * n^(6*n^2 - 3/2), where c = 0.104143806044091748191387307161835081649...
a(n) = A324403(n) * A367668(n). - Vaclav Kotesovec, Dec 01 2023
For n>0, a(n)/a(n-1) = A367823^2 / (2*n^18). - Vaclav Kotesovec, Dec 02 2023

Extensions

a(n)=1 prepended by Alois P. Heinz, Nov 26 2023

A272248 a(n) = Product_{k=0..n} (n^5 + k^5).

Original entry on oeis.org

0, 2, 67584, 7924375800, 2876035930521600, 2693451205324687500000, 5648896640332217707816550400, 23819277009290664033936067933468800, 185754160490281505676324140907107450880000, 2507604631016507710974687639612411760216253760000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2016

Keywords

Comments

In general, for p>=1, Product_{k=0..n} (n^p + k^p) ~ sqrt(2) * n^(p*(n+1)) * exp(n*Sum_{j>=1} (-1)^(j+1) / (j*(1 + j*p))).

Crossrefs

Programs

  • Mathematica
    Table[Product[n^5+k^5,{k,0,n}],{n,0,10}]

Formula

a(n) ~ 2^(2*n+1/2) * phi^(sqrt(5)*n) * n^(5*n+5) / exp((5-sqrt(phi)*Pi/5^(1/4))*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

A324440 a(n) = Product_{i=1..n, j=1..n} (i^7 + j^7).

Original entry on oeis.org

1, 2, 8520192, 956147263254051187507200, 790929096572487518050439299107158612099228070051840000, 266108022587896795750359251172229660295854509829286134803404773931312693787460334360985600000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2019

Keywords

Comments

For m>1, Product_{j=1..n, k=1..n} (j^m + k^m) ~ c(m) * exp(n*(n+1)*s(m) - m*n*(n-2)/2) * n^(m*(n^2 - 1/4)), where s(m) = Sum_{j>=1} (-1)^(j+1)/(j*(1 + m*j)) and c(m) is a constant (dependent only on m). Equivalently, s(m) = log(2) - HurwitzLerchPhi(-1, 1, 1 + 1/m). - Vaclav Kotesovec, Dec 01 2023

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^7 + j^7, i=1..n), j=1..n):
    seq(a(n), n=0..5);  # Alois P. Heinz, Nov 26 2023
  • Mathematica
    Table[Product[i^7+j^7, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
  • Python
    from math import prod, factorial
    def A324440(n): return prod(i**7+j**7 for i in range(1,n) for j in range(i+1,n+1))**2*factorial(n)**7<Chai Wah Wu, Nov 26 2023

Formula

Limit_{n->oo} (a(n)^(1/n^2))/n^7 = 2^(3/2) * (cos(3*Pi/14) / tan(Pi/7))^sin(3*Pi/14) / ((cos(Pi/14)*tan(3*Pi/14))^sin(Pi/14) * (sin(Pi/7)*tan(Pi/14))^cos(Pi/7)) * exp((Pi/sin(Pi/7) - 21)/2) = 0.0334234967249533921390751418772468470887965377...
From Vaclav Kotesovec, Dec 01 2023: (Start)
a(n) ~ c * exp(n*(n+1)*s - 7*n*(n-2)/2) * n^(7*(n^2 - 1/4)), where
s = Sum_{j>=1} (-1)^(j+1)/(j*(1 + 7*j)) = Pi/(2*sin(Pi/7)) + 3*log(2)/2 - 7 - cos(Pi/7) * log(2*sin(Pi/14)^2) - log(2*sin(3*Pi/14)^2) * sin(Pi/14) + log(cos(3*Pi/14)*cos(Pi/7) / sin(Pi/7)) * sin(3*Pi/14) = 0.10150386842315637912206687298894641634315636548242136512503... and
c = 0.068056503846689328929612652207251071282623125565150941566636264805878144...
Equivalently, s = log(2) - HurwitzLerchPhi(-1, 1, 1 + 1/7). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 26 2023

A367679 a(n) = Product_{i=1..n, j=1..n} (i^4 - i^3*j + i^2*j^2 - i*j^3 + j^4).

Original entry on oeis.org

1, 1936, 1765124816400, 19271059559619728900751360000, 25048411180596698786915756280274804766474649600000000, 23045227505577134384745253646275782332295626096040088365089618773238077194240000000000
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[i^4 - i^3*j + i^2*j^2 - i*j^3 + j^4, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
  • Python
    from math import prod, factorial
    def A367679(n): return (prod(i*(i*(i*(i-j)+j**2)-j**3)+j**4 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**2)**2 # Chai Wah Wu, Nov 26 2023

Formula

a(n) = A324438(n) / A079478(n).
a(n) ~ c * n^(4*n^2 - 5/6) * phi^(sqrt(5)*n*(n+1)) / exp(6*n^2 - sqrt(phi)*Pi*n*(n+1)/5^(1/4)), where phi = A001622 is the golden ratio and c = 0.2505211390193028244009922677012518708897316924498037078191143761182342931773594...
Showing 1-8 of 8 results.