A101686
a(n) = Product_{i=1..n} (i^2 + 1).
Original entry on oeis.org
1, 2, 10, 100, 1700, 44200, 1635400, 81770000, 5315050000, 435834100000, 44019244100000, 5370347780200000, 778700428129000000, 132379072781930000000, 26078677338040210000000, 5893781078397087460000000, 1514701737148051477220000000
Offset: 0
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 559-561, Section 147. - N. J. A. Sloane, May 29 2014
- Stanislav Sykora, Table of n, a(n) for n = 0..252
- Javier Cilleruelo, Squares in (1^2+1)...(n^2+1), Journal of Number Theory 128:8 (2008), pp. 2488-2491.
- Thang Pang Ern, Finding Squares in a Product of Squares, arXiv:2411.00012 [math.NT], 2024.
- Erhan Gürela and Ali Ulas Özgür Kisisel, A note on the products (1^mu + 1)(2^mu + 1)···(n^mu + 1), Journal of Number Theory, Volume 130, Issue 1, January 2010, Pages 187-191.
- V. H. Moll, An arithmetic conjecture on a sequence of arctangent sums, 2012.
-
p := n -> mul(x^2+1, x=0..n):
seq(p(i), i=0..14); # Gary Detlefs, Jun 03 2010
-
Table[Product[k^2+1,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Nov 11 2013 *)
Table[Pochhammer[I, n + 1] Pochhammer[-I, n + 1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
Table[Abs[Pochhammer[1 + I, n]]^2, {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2016 *)
-
a(n)=prod(k=1,n,k^2+1) \\ Charles R Greathouse IV, Aug 27 2008
-
{a(n)=if(n==0, 1, 1-polcoeff(sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, 1+j^2*x+x*O(x^n))), n))} \\ Paul D. Hanna, Jan 07 2013
-
from math import prod
def A101686(n): return prod(i**2+1 for i in range(1,n+1)) # Chai Wah Wu, Feb 22 2024
A255434
Product_{k=0..n} (k^4+1).
Original entry on oeis.org
1, 2, 34, 2788, 716516, 448539016, 581755103752, 1397375759212304, 5725048485492809488, 37567768161803815860256, 375715249386199962418420256, 5501222681512739849730509388352, 114078854746529686263861573186255424, 3258320249270380899068414253345827420288
Offset: 0
-
Table[Product[k^4 + 1, {k, 0, n}], {n, 0, 15}]
FoldList[Times,Range[0,15]^4+1] (* Harvey P. Dale, Nov 01 2022 *)
-
a(n) = prod(k=1, n, 1+k^4); \\ Michel Marcus, Jan 25 2016
A272246
a(n) = Product_{k=0..n} (n^3 + k^3).
Original entry on oeis.org
0, 2, 1152, 1428840, 3488808960, 15044494500000, 105235903511101440, 1119277024472896248960, 17216259547948971039129600, 368066786222106315186876633600, 10591209807103301277597696000000000, 399472472359100444604916002033020774400
Offset: 0
-
Table[Product[n^3+k^3,{k,0,n}],{n,0,12}]
Original entry on oeis.org
9, 252, 16380, 2063880, 447861960, 154064514240, 79035095805120, 57695619937737600, 57753315557675337600, 76927416322823549683200, 133007502822161917402252800, 292350491203111894450151654400
Offset: 2
a(2) = 2^3+1 = 9. a(3) = (2^3+1)*(3^3+1) = 9 * 28 = 252. a(4) = (2^3+1)*(3^3+1)*(4^3+1) = 9 * 28 * 65 = 16380.
-
Table[Product[(k^3+1),{k,2,n}],{n,2,20}] (* Vaclav Kotesovec, Jul 11 2015 *)
FoldList[Times,Range[2,20]^3+1] (* Harvey P. Dale, Oct 15 2017 *)
A255435
Product_{k=0..n} (k^5 + 1).
Original entry on oeis.org
1, 2, 66, 16104, 16506600, 51599631600, 401290334953200, 6744887949893385600, 221023233230056352726400, 13051421922234827628493920000, 1305155243645404997677020493920000, 210197862299579765685879504586803840000, 52304164669591331834914454764848159918720000
Offset: 0
-
Table[Product[k^5 + 1, {k, 0, n}], {n, 0, 15}]
-
a(n) = prod(k=1, n, 1+k^5); \\ Michel Marcus, Jan 25 2016
A375840
a(n) = Product_{k=0..n} (k^3 + n).
Original entry on oeis.org
0, 2, 60, 3960, 505920, 111945600, 39501498960, 20891200176000, 15785674348953600, 16407441209402496000, 22748452701706791576000, 41018285140626186366336000, 94161166261926730618189824000, 270252010494895412092926136320000, 954766647796042233397162343121696000
Offset: 0
-
Table[Product[k^3 + n, {k, 0, n}], {n, 0, 15}]
A256019
a(n) = Sum_{i=1..n-1} (i^3 * a(i)), a(1)=1.
Original entry on oeis.org
1, 1, 9, 252, 16380, 2063880, 447861960, 154064514240, 79035095805120, 57695619937737600, 57753315557675337600, 76927416322823549683200, 133007502822161917402252800, 292350491203111894450151654400, 802502098352542150265666291328000
Offset: 1
-
Clear[a]; a[1]=1; a[n_]:= a[n] = Sum[i^3*a[i],{i,1,n-1}]; Table[a[n],{n,1,20}]
Flatten[{1, Table[FullSimplify[Cosh[Sqrt[3]*Pi/2] * Gamma[n+1] * Gamma[n-1/2 - I*Sqrt[3]/2] * Gamma[n-1/2 + I*Sqrt[3]/2] / (2*Pi)],{n,2,20}]}]
A269947
Triangle read by rows, Stirling cycle numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+(n-1)^3*T(n-1,k), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 8, 9, 1, 0, 216, 251, 36, 1, 0, 13824, 16280, 2555, 100, 1, 0, 1728000, 2048824, 335655, 15055, 225, 1, 0, 373248000, 444273984, 74550304, 3587535, 63655, 441, 1, 0, 128024064000, 152759224512, 26015028256, 1305074809, 25421200, 214918, 784, 1
Offset: 0
Triangle starts:
1,
0, 1,
0, 1, 1,
0, 8, 9, 1,
0, 216, 251, 36, 1,
0, 13824, 16280, 2555, 100, 1,
0, 1728000, 2048824, 335655, 15055, 225, 1.
-
T := proc(n, k) option remember;
`if`(n=k, 1,
`if`(k<0 or k>n, 0,
T(n-1, k-1) + (n-1)^3*T(n-1, k))) end:
for n from 0 to 6 do seq(T(n,k), k=0..n) od;
-
T[n_, k_] := T[n, k] = Which[n == k, 1, k < 0 || k > n, 0, True, T[n - 1, k - 1] + (n - 1)^3 T[n - 1, k]];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
A354054
a(n) = Product_{k=0..n} (k^6 + 1).
Original entry on oeis.org
1, 2, 130, 94900, 388805300, 6075471617800, 283463279271694600, 33349454806314869690000, 8742392830201411514885050000, 4646074730467898538293540742100000, 4646079376542629006192079035640742100000, 8230817672466612927467651920537784356160200000
Offset: 0
-
A354054 := proc(n)
mul( k^6+1,k=0..n) ;
end proc:
seq(A354054(n),n=0..40) ; # R. J. Mathar, Jul 17 2023
-
Table[Product[k^6 + 1, {k, 0, n}], {n, 0, 15}]
-
a(n) = prod(k=1, n, k^6+1);
A269946
Triangle read by rows, Lah numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^3+k^3)*T(n-1, k), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 18, 18, 1, 0, 504, 648, 72, 1, 0, 32760, 47160, 7200, 200, 1, 0, 4127760, 6305040, 1141560, 45000, 450, 1, 0, 895723920, 1416456720, 283704120, 13741560, 198450, 882, 1, 0, 308129028480, 498072032640, 106386981120, 5876519040, 106616160, 691488, 1568, 1
Offset: 0
Triangle starts:
[1]
[0, 1]
[0, 2, 1]
[0, 18, 18, 1]
[0, 504, 648, 72, 1]
[0, 32760, 47160, 7200, 200, 1]
[0, 4127760, 6305040, 1141560, 45000, 450, 1]
-
T := proc(n, k) option remember;
`if`(n=k, 1,
`if`(k<0 or k>n, 0,
T(n-1, k-1) + ((n-1)^3+k^3) * T(n-1, k) )) end:
for n from 0 to 6 do seq(T(n,k), k=0..n) od;
-
T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^3 + k^3)*T[n-1, k]; T[, ] = 0;
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
Showing 1-10 of 10 results.
Comments