cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A158622 Numerator of the reduced fraction A158620(n)/A158621(n).

Original entry on oeis.org

7, 13, 7, 31, 43, 19, 73, 91, 37, 133, 157, 61, 211, 241, 91, 307, 343, 127, 421, 463, 169, 553, 601, 217, 703, 757, 271, 871, 931, 331, 1057, 1123, 397, 1261, 1333, 469, 1483, 1561, 547, 1723, 1807, 631, 1981, 2071, 721, 2257, 2353, 817, 2551, 2653, 919, 2863
Offset: 2

Views

Author

Jonathan Vos Post, Mar 23 2009

Keywords

Comments

A158620(n) = Product_{k=2..n} (k^3-1). A158621(n) = Product_{k=2..n} (k^3+1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n). The reduced fractions are 7/9, 13/18, 7/10, 31/45, 43/63, 19/28, 73/108, 91/135, 37/55, 133/198, ...
Is this the same as A046163? - R. J. Mathar, Mar 27 2009
Apparently a(n) = A130770(n) for 2 <= n <= 53. - Georg Fischer, Oct 24 2018

Examples

			a(2) = 7 = numerator of (2^3-1)/2^3+1 = 7/9.
a(3) = 13 = numerator of ((2^3-1)*(3^3-1))/((2^3+1)*(3^3+1)) = (7 * 26)/ (9 * 28) = 182/252 = 13/18.
a(4) = 7 = = numerator of ((2^3-1)*(3^3-1)*(4^3-1))/((2^3+1)*(3^3+1)*(4^3+1)) = (7 * 26 * 63)/(9 * 28 * 65) = 11466/16380 = 7/10.
a(5) = 31 = numerator of ((2^3-1)(3^3-1)(4^3-1)(5^3-1))/((2^3+1)(3^3+1)(4^3+1)(5^3+1)) = 1421784/2063880 = 31/45.
		

Crossrefs

Programs

  • Maple
    A158622 := proc(n) 2*(n^2+n+1)/3/n/(n+1) ; numer(%) ; end: seq(A158622(n),n=2..100) ; # R. J. Mathar, Mar 27 2009
  • Mathematica
    Table[Product[k^3-1,{k,2,n}]/Product[k^3+1,{k,2,n}],{n,2,60}]//Numerator (* Harvey P. Dale, Feb 26 2020 *)

Formula

Numerator of (Product_{k=2..n} (k^3-1))/Product_{k=2..n} (k^3+1) = numerator of Product_{k=2..n} A068601(k)/A001093(k).
A158620(n)/A158621(n) = 2(n^2+n+1)/(3n(n+1)). - R. J. Mathar, Mar 27 2009
Empirical g.f.: -x^2*(x^8 + x^7 + x^6 - 2*x^5 + 4*x^4 + 10*x^3 + 7*x^2 + 13*x + 7) / ((x-1)^3*(x^2 + x + 1)^3). - Colin Barker, May 09 2013

Extensions

More terms from R. J. Mathar, Mar 27 2009

A158623 Denominator of the reduced fraction A158620(n)/A158621(n).

Original entry on oeis.org

9, 18, 10, 45, 63, 28, 108, 135, 55, 198, 234, 91, 315, 360, 136, 459, 513, 190, 630, 693, 253, 828, 900, 325, 1053, 1134, 406, 1305, 1395, 496, 1584, 1683, 595, 1890, 1998, 703, 2223, 2340, 820, 2583, 2709, 946, 2970, 3105, 1081, 3384, 3528, 1225, 3825
Offset: 2

Views

Author

Jonathan Vos Post, Mar 23 2009

Keywords

Comments

A158620(n) = Product_{k=2..n} (k^3-1). A158621(n) = Product_{k=2..n} (k^3+1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n). The reduced fractions are 7/9, 13/18, 7/10, 31/45, 43/63, 19/28, 73/108, 91/135, 37/55, 133/198, ...

Examples

			a(2) = 9 = denominator of (2^3-1)/2^3+1 = 7/9. a(3) = 18 = denominator of ((2^3-1)*(3^3-1))/((2^3+1)*(3^3+1)) = (7 * 26)/ (9 * 28) = 182/252 = 13/18. a(4) = 10 = denominator of ((2^3-1)*(3^3-1)*(4^3-1))/((2^3+1)*(3^3+1)*(4^3+1)) = (7 * 26 * 63)/(9 * 28 * 65) = 11466/16380 = 7/10. a(5) = 45 = denominator of ((2^3-1)(3^3-1)(4^3-1)(5^3-1))/((2^3+1)(3^3+1)(4^3+1)(5^3+1)) = 1421784/2063880 = 31/45.
		

Crossrefs

Programs

Formula

Denominator of (Product_{k=2..n} (k^3-1)) / Product_{k=2..n} (k^3+1) = denominator of Product_{k=2..n} A068601(k)/A001093(k).
A158620(n)/A158621(n) = 2(n^2+n+1)/(3n(n+1)). Conjecture: a(n) = 3a(n-3) - 3a(n-6) + a(n-9), so trisections are A152996, A060544 and 3*A081266. - R. J. Mathar, Mar 27 2009
Empirical g.f.: -x^2*(x^8 - 2*x^5 + 9*x^4 + 18*x^3 + 10*x^2 + 18*x + 9) / ((x-1)^3*(x^2 + x + 1)^3). - Colin Barker, May 09 2013

Extensions

More terms from R. J. Mathar, Mar 27 2009

A255433 a(n) = Product_{k=0..n} (k^3+1).

Original entry on oeis.org

1, 2, 18, 504, 32760, 4127760, 895723920, 308129028480, 158070191610240, 115391239875475200, 115506631115350675200, 153854832645647099366400, 266015005644323834804505600, 584700982406223788900303308800, 1605004196705084300531332582656000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 23 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^3 + 1, {k, 0, n}], {n, 0, 20}]
    FullSimplify[Table[(Cosh[Sqrt[3]*Pi/2] * Gamma[2+n] * Gamma[1/2 - I*Sqrt[3]/2 + n] * Gamma[1/2 + I*Sqrt[3]/2 + n])/Pi, {n, 0, 20}]]
    FoldList[Times,Range[0,20]^3+1] (* Harvey P. Dale, Jul 07 2017 *)
  • PARI
    a(n) = prod(k=1, n, 1+k^3); \\ Michel Marcus, Jan 25 2016

Formula

a(n) ~ 2*sqrt(2*Pi) * cosh(sqrt(3)*Pi/2) * n^(3*n + 3/2) / exp(3*n).
a(n) = 2*A158621(n). - Vaclav Kotesovec, Jul 11 2015

A158620 Partial products of A068601.

Original entry on oeis.org

7, 182, 11466, 1421784, 305683560, 104543777520, 53421870312720, 38891121587660160, 38852230466072499840, 51673466519876424787200, 89240076679826585607494400, 195971208388899181994057702400
Offset: 2

Views

Author

Jonathan Vos Post, Mar 23 2009

Keywords

Comments

A158621(n) = Product_{k=2..n} (k^3+1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n).
Also the determinant of the n X n matrix given by m(i,j) = i^3 if i=j and 1 otherwise. For example, Det[{{1,1,1, 1},{1,8,1,1},{1,1,27,1},{1,1,1,64}}] = 11466 = a(4). - John M. Campbell, May 20 2011

Examples

			a(2) = 2^3-1 = 7.
a(3) = (2^3-1)*(3^3-1) = 7 * 26 = 182.
a(4) = (2^3-1)*(3^3-1)*(4^3-1) = 7 * 26 * 63 = 11466.
		

Crossrefs

Programs

  • Mathematica
    Rest[FoldList[Times,1,Range[2,15]^3-1]] (* Harvey P. Dale, Apr 18 2015 *)
  • PARI
    a(n) = prod(k = 2, n, k^3 - 1); \\ Michel Marcus, Sep 29 2013

Formula

Product_{k=2..n} (k^3-1) = Product_{k=2..n} A068601(k).
a(n) ~ 2^(3/2) * sqrt(Pi) * cosh(sqrt(3)*Pi/2) * n^(3*n+3/2) / (3 * exp(3*n)). - Vaclav Kotesovec, Jul 11 2015

A256019 a(n) = Sum_{i=1..n-1} (i^3 * a(i)), a(1)=1.

Original entry on oeis.org

1, 1, 9, 252, 16380, 2063880, 447861960, 154064514240, 79035095805120, 57695619937737600, 57753315557675337600, 76927416322823549683200, 133007502822161917402252800, 292350491203111894450151654400, 802502098352542150265666291328000
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 13 2015

Keywords

Comments

a(n) = A158621(n-1) for n > 2. - Georg Fischer, Oct 23 2018

Crossrefs

Programs

  • Mathematica
    Clear[a]; a[1]=1; a[n_]:= a[n] = Sum[i^3*a[i],{i,1,n-1}]; Table[a[n],{n,1,20}]
    Flatten[{1, Table[FullSimplify[Cosh[Sqrt[3]*Pi/2] * Gamma[n+1] * Gamma[n-1/2 - I*Sqrt[3]/2] * Gamma[n-1/2 + I*Sqrt[3]/2] / (2*Pi)],{n,2,20}]}]

Formula

Product_{i=2..n-1} (i^3 + 1), for n>2.
a(n) ~ cosh(sqrt(3)*Pi/2) / (2*Pi) * ((n-1)!)^3.
a(n) = A255433(n-1)/2.
Showing 1-5 of 5 results.