cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A101686 a(n) = Product_{i=1..n} (i^2 + 1).

Original entry on oeis.org

1, 2, 10, 100, 1700, 44200, 1635400, 81770000, 5315050000, 435834100000, 44019244100000, 5370347780200000, 778700428129000000, 132379072781930000000, 26078677338040210000000, 5893781078397087460000000, 1514701737148051477220000000
Offset: 0

Views

Author

Ralf Stephan, Dec 13 2004

Keywords

Comments

Sum of all coefficients in Product_{k=0..n} (x + k^2).
Row sums of triangle of central factorial numbers (A008955).
"HANOWA" is a matrix whose eigenvalues lie on a vertical line. It is an N X N matrix with 2 X 2 blocks with identity matrices in the upper left and lower right blocks and diagonal matrices containing the first N integers in the upper right and lower left blocks. In MATLAB, the following code generates the sequence... for n=0:2:TERMS*2 det(gallery('hanowa',n)) end. - Paul Max Payton, Mar 31 2005
Cilleruelo shows that a(n) is a square only for n = 0 and 3. - Charles R Greathouse IV, Aug 27 2008
a(n) = A231530(n)^2 + A231531(n)^2. - Stanislav Sykora, Nov 10 2013

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 559-561, Section 147. - N. J. A. Sloane, May 29 2014

Crossrefs

Equals 2 * A051893(n+1), n>0. Cf. A156648.

Programs

  • Maple
    p := n -> mul(x^2+1, x=0..n):
    seq(p(i), i=0..14); # Gary Detlefs, Jun 03 2010
  • Mathematica
    Table[Product[k^2+1,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Nov 11 2013 *)
    Table[Pochhammer[I, n + 1] Pochhammer[-I, n + 1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
    Table[Abs[Pochhammer[1 + I, n]]^2, {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2016 *)
  • PARI
    a(n)=prod(k=1,n,k^2+1) \\ Charles R Greathouse IV, Aug 27 2008
    
  • PARI
    {a(n)=if(n==0, 1, 1-polcoeff(sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, 1+j^2*x+x*O(x^n))), n))} \\ Paul D. Hanna, Jan 07 2013
    
  • Python
    from math import prod
    def A101686(n): return prod(i**2+1 for i in range(1,n+1)) # Chai Wah Wu, Feb 22 2024

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^2*x). - Paul D. Hanna, Jan 07 2013
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - ((k+1)^2+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
a(n) ~ (n!)^2 * sinh(Pi)/Pi. - Vaclav Kotesovec, Nov 11 2013
From Vladimir Reshetnikov, Oct 25 2015: (Start)
a(n) = Gamma(n+1+i)*Gamma(n+1-i)*sinh(Pi)/Pi.
a(n) ~ 2*exp(-2*n)*n^(2*n+1)*sinh(Pi).
G.f. for 1/a(n): hypergeom([1], [1-i, 1+i], x).
E.g.f. for a(n)/n!: hypergeom([1-i, 1+i], [1], x), where i=sqrt(-1).
D-finite with recurrence: a(0) = 1, a(n) = (n^2+1)*a(n-1). (End)
a(n+3)/a(n+2) - 2 a(n+2)/a(n+1) + a(n+1)/a(n) = 2. - Robert Israel, Oct 25 2015
a(n) = A003703(n+1)^2 + A009454(n+1)^2. - Vladimir Reshetnikov, Oct 15 2016
a(n) = A105750(n)^2 + A105751(n)^2. - Ridouane Oudra, Dec 15 2021

Extensions

More terms from Charles R Greathouse IV, Aug 27 2008
Simpler definition from Gary Detlefs, Jun 03 2010
Entry revised by N. J. A. Sloane, Dec 22 2012
Minor edits by Vaclav Kotesovec, Mar 13 2015

A105751 Imaginary part of Product_{k=0..n} (1 + k*i), i = sqrt(-1).

Original entry on oeis.org

0, 1, 3, 0, -40, -90, 1050, 6160, -46800, -549900, 3103100, 67610400, -271627200, -11186357000, 26495469000, 2416003824000, -1394099824000, -662595375078000, -936096296850000, 225382826562400000, 819329864480400000, -93217812901913700000, -570263312237604700000
Offset: 0

Views

Author

Paul Barry, Apr 18 2005

Keywords

Comments

From Peter Bala, Jun 01 2023: (Start)
Compare with A105750(n) = the real part of Product_{k = 0..n} (1 + k*sqrt(-1)). Moll (2012) studied the prime divisors of the terms of A105750 and divided the primes into three classes. Numerical calculation suggests that a similar division holds in this case.
Type 1: primes p that do not divide any element of the sequence {a(n)}.
In this case, unlike in A105750, the set of type 1 primes is empty; that is, every prime p divides some term of this sequence.
Type 2: primes p such that the p-adic valuation v_p(a(n)) has asymptotically linear behavior. An example is given below.
We conjecture that the set of type 2 primes consists of primes p == 1 (mod 4), equivalently, rational primes that split in the field extension Q(sqrt(-1)) of Q, together with the prime p = 2, which ramifies in Q(sqrt(-1)). See A002144.
Moll's conjecture 5.5 extends to this sequence and takes the form:
(i) the 2-adic valuation v_2(a(n)) ~ n/4 as n -> oo.
(ii) for the other primes of type 2, the p-adic valuation v_p(a(n)) ~ n/(p - 1) as n -> oo.
Type 3: primes p such that the sequence of p-adic valuations {v_p(a(n)) : n >= 0} exhibits an oscillatory behavior (this phrase is not precisely defined). An example is given below.
We conjecture that the set of type 3 primes consists of primes p == 3 (mod 4), equivalently, rational primes that remain inert in the field extension Q(sqrt(-1)) of Q. See A002145. (End)

Examples

			From _Peter Bala_, Jun 01 2023: (Start)
The sequence of 5-adic valuations [v_5(a(n)) : n = 4..100] = [1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 12, 11, 11, 13, 11, 12, 13, 13, 12, 12, 14, 13, 13, 14, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 20, 19, 19, 20, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 24, 25, 25, 24, 24, 25, 25, 25].
Note that v_5(a(100)) = 25 = 100/(5 - 1), in agreement with the asymptotic behavior conjectured above.
The sequence of 3-adic valuations [v_3(a(n)) : n >= 4] begins [0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 3, 1, 0, 3, 3, 0, 1, 3, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 3, ...], exhibiting the oscillatory behavior for type 3 primes conjectured above. (End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          ((2*n-1)*a(n-1)-(n^2-2*n+2)*n*a(n-2))/(n-1))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 11 2018
  • Mathematica
    Table[Im[Product[1+k*I,{k,0,n}]],{n,0,22}] (* James C. McMahon, Jan 27 2024 *)
  • PARI
    a(n) = imag(prod(k=0, n, 1+k*I)); \\ Michel Marcus, Apr 11 2018
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A105751(n): return sum(stirling(n+1,n-(k<<1),kind=1)*(-1 if k&1 else 1) for k in range((n>>1)+1)) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = ((2*n-1)*a(n-1)-(n^2-2*n+2)*n*a(n-2))/(n-1) for n > 1, a(n) = n for n < 2. - Alois P. Heinz, Apr 11 2018
From Peter Bala, May 27 2023:(Start)
a(n) = Sum_{k = 0..floor((n+1)/2)} (-1)^k*|Stirling1(n+1, n-2*k)|, where Stirling1(n, k) = A048994(n,k).
The triangular number n*(n+1)/2 divides a(n). See A164652. In particular, if p is an odd prime then p divides a(p).
a(2*n) = (-1)^(n+1)*A003703(2*n+1) for n >= 0.
a(2*n+1) = (-1)^(n+1)*A009454(2*n+2) for n >= 0. (End)

A231530 Real part of Product_{k=1..n} (k+i), where i is the imaginary unit.

Original entry on oeis.org

1, 1, 1, 0, -10, -90, -730, -6160, -55900, -549900, -5864300, -67610400, -839594600, -11186357000, -159300557000, -2416003824000, -38894192662000, -662595375078000, -11911522255750000, -225382826562400000, -4477959179352100000, -93217812901913700000, -2029107997508660900000
Offset: 0

Views

Author

Stanislav Sykora, Nov 10 2013

Keywords

Comments

Extension of factorial(n) to factim(n,m) defined by the recurrence a(0)=1, a(n) = a(n-1)*(n+m*i), where i is the imaginary unit. Hence n! = factim(n,0), while the current sequence lists the real parts of factim(n,1). The imaginary parts are in A231531 and squares of magnitudes are in A101686.

Examples

			factim(5,1) = -90 + 190*i. Hence a(5) = -90.
		

Crossrefs

Cf. A231531 (imaginary parts), A101686 (squares of magnitudes), A009454.
See A242651, A242652 for a pair of similar sequences.

Programs

  • Maple
    seq(simplify(Re(I!*(n-I)!)*sinh(Pi)/Pi),n=0..22); # Peter Luschny, Oct 23 2015
  • Mathematica
    Table[Re[Product[k+I,{k,n}]],{n,0,30}] (* Harvey P. Dale, Aug 04 2016 *)
  • PARI
    Factim(nmax,m)={local(a,k);a=vector(nmax);a[1]=1+0*I;
      for (k=2,nmax,a[k]=a[k-1]*(k-1+m*I););return(a);}
    a = Factim(1000,1); real(a)
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A231530(n): return sum(stirling(n+1,(k<<1)+1,kind=1)*(-1 if k&1 else 1) for k in range((n>>1)+1)) # Chai Wah Wu, Feb 22 2024
  • Sage
    A231530 = lambda n : rising_factorial(1-I, n).real()
    [A231530(n) for n in range(24)] # Peter Luschny, Oct 23 2015
    

Formula

From Peter Luschny, Oct 23 2015: (Start)
a(n) = Re(i!*(n-i)!)*sinh(Pi)/Pi.
a(n) = n!*[x^n](cos(log(1-x))/(1-x)).
a(n) = Sum_{k=0..floor(n/2)} (-1)^(n+k)*Stirling1(n+1,2*k+1).
a(n) = Re(rf(1+i,n)) where rf(k,n) is the rising factorial and i the imaginary unit.
a(n) = (-1)^n*A009454(n+1). (End)

A370553 a(n) is the numerator of the imaginary part of Product_{k=1..n} (1 + i/k) where i is the imaginary unit.

Original entry on oeis.org

1, 3, 5, 5, 19, 35, 331, 65, 18265, 4433, 141349, 18863, 1035215, 14705, 9158903, 6702403, -34376687, -21392575, -33594289475, -2206770805, -4905856636525, -617315066615, -1713253866399725, -551582580432325, -51270656805872335, -180184164588301, -1630191679256007299
Offset: 1

Views

Author

Hugo Pfoertner, Feb 22 2024

Keywords

Examples

			See A370551.
		

Crossrefs

Programs

  • PARI
    a370553(n) = numerator(imag(prod(k=1, n, 1+I/k)))
    
  • Python
    from math import factorial, gcd
    from sympy.functions.combinatorial.numbers import stirling
    def A370553(n): return (a:=sum(stirling(n+1,k<<1,kind=1)*(1 if k&1 else -1) for k in range((n+1>>1)+1)))//gcd(a,factorial(n)) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = numerator of A231531(n)/n!. - Chai Wah Wu, Feb 22 2024

A370554 a(n) is the denominator of the imaginary part of Product_{k=1..n} (1 + i/k) where i is the imaginary unit.

Original entry on oeis.org

1, 2, 3, 3, 12, 24, 252, 56, 18144, 5184, 199584, 33264, 2395008, 48384, 50295168, 100590336, 804722688, 146313216, 137607579648, 6552741888, 11559036690432, 1216740704256, 2924436282679296, 835553223622656, 70186470784303104, 226043384168448, 1895034711176183808
Offset: 1

Views

Author

Hugo Pfoertner, Feb 22 2024

Keywords

Examples

			See A370551.
		

Crossrefs

Programs

  • PARI
    a370554(n) = denominator(imag(prod(k=1, n, 1+I/k)))
    
  • Python
    from math import factorial, gcd
    from sympy.functions.combinatorial.numbers import stirling
    def A370554(n): return (a:=factorial(n))//gcd(a,sum(stirling(n+1,k<<1,kind=1)*(1 if k&1 else -1) for k in range((n+1>>1)+1))) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = denominator of A231531(n)/n!. - Chai Wah Wu, Feb 22 2024

A242652 Imaginary part of Product_{k=0..n} (i-k), where i=sqrt(-1).

Original entry on oeis.org

1, -1, 1, 0, -10, 90, -730, 6160, -55900, 549900, -5864300, 67610400, -839594600, 11186357000, -159300557000, 2416003824000, -38894192662000, 662595375078000, -11911522255750000, 225382826562400000, -4477959179352100000, 93217812901913700000, -2029107997508660900000, 46099220630461596000000
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2014

Keywords

Comments

Shifted version of A009454. - R. J. Mathar, May 30 2014

Examples

			Table of n, Product_{k=0..n} (i-k):
   0, i
   1, -1 - i
   2, 3 + i
   3, -10
   4, 40 - 10*i
   5, -190 + 90*i
   6, 1050 - 730*i
   7, -6620 + 6160*i
   8, 46800 - 55900*i
   9, -365300 + 549900*i
  10, 3103100 - 5864300*i
  11, -28269800 + 67610400*i
  12, 271627200 - 839594600*i
		

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 561-562, Section 148.

Crossrefs

Cf. A009454.
A231531 is the same except for signs.

Programs

  • Maple
    a:= n-> Im(mul(I-j, j=0..n)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 03 2021
  • PARI
    a(n) = imag(prod(k=0, n, I-k)); \\ Michel Marcus, Jan 03 2021

A231532 Decimal expansion of the real part of Sum_{n=0..inf}(1/c_n), c_0=1, c_n=c_(n-1)*(n+I).

Original entry on oeis.org

1, 5, 9, 1, 5, 4, 7, 8, 1, 4, 7, 3, 2, 8, 5, 1, 9, 5, 7, 3, 3, 6, 7, 7, 9, 8, 8, 2, 0, 6, 4, 9, 9, 8, 2, 7, 6, 2, 4, 6, 0, 5, 9, 2, 6, 7, 4, 7, 8, 6, 8, 0, 0, 9, 2, 5, 4, 5, 3, 5, 3, 2, 5, 7, 0, 7, 6, 3, 8, 0, 1, 6, 3, 3, 1, 5, 2, 7, 1, 6, 6, 4, 8, 8, 3, 7, 0, 3, 2, 6, 8, 6, 9, 6, 8, 5, 9, 6, 3, 4, 5, 4, 8, 8, 9
Offset: 1

Views

Author

Stanislav Sykora, Nov 10 2013

Keywords

Comments

Consider an extension of exp(x) to an intriguing function, expim(x,y), defined by the power series Sum_{n=0..inf}(x^n/c_n), where c_0 = 1, c_n = c_(n-1)*(n+y*I), so that exp(x) = expim(x,0). The current sequence regards the real part of expim(1,1). The decimal expansion of the imaginary part is in A231533 and that of the absolute value in A231534.

Examples

			1.59154781473285195733677988...
		

Crossrefs

Cf. A231533 (imaginary part), A231534 (absolute value), and A231530, A231531 (respectively, the real and imaginary parts of the expansion coefficient's denominators).

Programs

  • PARI
    Expim(x,y)={local (c,k,lastval,val);c = 1.0+0.0*I;lastval = c;k = 1; while (k,c*=x/(k + y*I);val = lastval + c;if (val==lastval, break);   lastval = val;k += 1;);return (val);}
    real(Expim(1,1))

Formula

real(Sum_{n=0..inf}(1/(A231530(n)+A231531(n)*I))).

A231533 Decimal expansion of the negative imaginary part of Sum_{n=0..inf}(1/c_n), c_0=1, c_n=c_(n-1)*(n+I).

Original entry on oeis.org

9, 2, 8, 5, 6, 0, 7, 7, 7, 3, 2, 1, 8, 4, 5, 5, 8, 6, 6, 6, 7, 2, 0, 2, 9, 3, 2, 8, 5, 6, 6, 9, 8, 7, 2, 0, 2, 8, 9, 8, 6, 9, 7, 4, 6, 3, 3, 1, 5, 6, 5, 6, 5, 9, 9, 9, 2, 3, 1, 4, 8, 3, 3, 9, 0, 9, 9, 5, 0, 0, 6, 1, 7, 0, 2, 6, 0, 3, 6, 5, 9, 7, 6, 7, 1, 9, 0, 7, 4, 5, 8, 4, 5, 5, 1, 2, 2, 7, 1, 8, 1, 0, 0, 7, 1
Offset: 0

Views

Author

Stanislav Sykora, Nov 10 2013

Keywords

Comments

Consider an extension of exp(x) to an intriguing function, expim(x,y), defined by the power series Sum_{n=0..inf}(x^n/c_n), where c_0 = 1, c_n = c_(n-1)*(n+y*I), so that exp(x) = expim(x,0). The current sequence regards the negative imaginary part of the complex expim(1,1). The decimal expansion of the real part is in A231532 and that of the absolute value in A231534.

Examples

			-0.92856077732184558666720293...
		

Crossrefs

Cf. A231532, A231534, and A231530, A231531 (respectively the real and imaginary parts of the expansion coefficient's denominators).

Programs

  • PARI
    Expim(x,y)={local (c,k,lastval,val);c = 1.0+0.0*I;lastval = c;k = 1; while (k,c*=x/(k + y*I);val = lastval + c;if (val==lastval, break);   lastval = val;k += 1;);return (val);}
    imag(Expim(1,1))

Formula

imag(Sum_{n=0..inf}(1/(A231530(n)+A231531(n)*I))).

A231534 Decimal expansion of the absolute value of Sum_{n=0..inf}(1/c_n), c_0=1, c_n=c_(n-1)*(n+I).

Original entry on oeis.org

1, 8, 4, 2, 6, 2, 0, 2, 9, 8, 3, 1, 4, 7, 3, 0, 5, 3, 8, 9, 5, 8, 5, 4, 3, 8, 6, 6, 6, 9, 0, 8, 7, 1, 4, 3, 3, 0, 5, 5, 2, 0, 3, 2, 7, 8, 2, 6, 4, 7, 4, 9, 1, 9, 6, 8, 4, 2, 8, 6, 0, 3, 2, 0, 5, 4, 7, 0, 6, 5, 1, 1, 5, 1, 0, 3, 0, 2, 0, 1, 7, 3, 1, 4, 9, 3, 8, 7, 2, 6, 7, 8, 3, 3, 0, 4, 8, 1, 6, 1, 2, 8, 0, 5, 6
Offset: 1

Views

Author

Stanislav Sykora, Nov 10 2013

Keywords

Comments

Consider an extension of exp(x) to an intriguing function, expim(x,y), defined by the power series Sum_{n=0..inf}(x^n/c_n), where c_0 = 1, c_n = c_(n-1)*(n+y*I), so that exp(x) = expim(x,0). The current sequence regards the absolute value of expim(1,1). The decimal expansions of the real and imaginary parts of expim(1,1) are in A231532 and A231533, respectively.

Examples

			1.8426202983147305389585438...
		

Crossrefs

Cf. A231532 (real part), A231533 (imaginary part), and A231530, A231531 (respectively, the real and imaginary parts of the expansion coefficient's denominators)

Programs

  • PARI
    Expim(x, y)={local (c, k, lastval, val); c = 1.0+0.0*I; lastval = c; k = 1; while (k, c*=x/(k + y*I); val = lastval + c; if (val==lastval, break);   lastval = val; k += 1; ); return (val); }
    abs(Expim(1, 1))

Formula

abs(Sum_{n=0..inf}(1/(A231530(n)+A231531(n)*I))).

A242651 Real part of Product_{k=0..n} (i-k), where i = sqrt(-1).

Original entry on oeis.org

0, -1, 3, -10, 40, -190, 1050, -6620, 46800, -365300, 3103100, -28269800, 271627200, -2691559000, 26495469000, -238131478000, 1394099824000, 15194495654000, -936096296850000, 29697351895900000, -819329864480400000, 21683886333440500000, -570263312237604700000, 15145164178973569000000
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2014

Keywords

Comments

Shifted version of A003703. - R. J. Mathar, May 30 2014

Examples

			Table of n, Product_{k=0..n} (i-k):
   0,         i
   1,        -1 -           i
   2,         3 +           i
   3,       -10
   4,        40 -        10*i
   5,      -190 +        90*i
   6,      1050 -       730*i
   7,     -6620 +      6160*i
   8,     46800 -     55900*i
   9,   -365300 +    549900*i
  10,   3103100 -   5864300*i
  11, -28269800 +  67610400*i
  12, 271627200 - 839594600*i
		

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 561-562, Section 148.

Crossrefs

A231531 is the same except for signs.

Programs

  • Mathematica
    Table[Re[(I - n)*Pochhammer[1 + I - n, n]], {n, 0, 25}] (* Vaclav Kotesovec, May 23 2021 *)
  • PARI
    a(n) = real(prod(k=0, n, I-k)); \\ Michel Marcus, Jan 03 2021

Formula

a(n) = Sum_{k=0..floor((n+1)/2)} (-1)^k*Stirling1(n+1,2*k). - Ammar Khatab, May 23 2021
Showing 1-10 of 11 results. Next