cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A306769 Decimal expansion of Sum_{k>=2} (-1)^k * Zeta(k)^2 / k.

Original entry on oeis.org

1, 0, 4, 3, 4, 0, 2, 9, 1, 7, 5, 7, 4, 2, 8, 8, 7, 3, 3, 2, 5, 5, 2, 8, 9, 6, 4, 6, 6, 7, 1, 6, 7, 6, 0, 3, 0, 5, 4, 8, 4, 7, 0, 8, 6, 6, 0, 4, 6, 8, 8, 2, 5, 6, 1, 0, 4, 4, 5, 7, 0, 4, 7, 9, 7, 6, 9, 5, 8, 5, 0, 6, 2, 5, 5, 2, 5, 2, 4, 8, 4, 3, 2, 7, 6, 1, 5, 1, 0, 7, 2, 0, 7, 9, 8, 4, 1, 4, 3, 5, 6, 2, 1, 4, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Comments

Sum_{k>=2} (-1)^k*Zeta(k)/k = A001620 (see MathWorld, formula 122).

Examples

			1.043402917574288733255289646671676030548470866046882561044570479769585...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^j*Zeta(j)^2/j, j=2..infinity), 100);
  • Mathematica
    NSum[(-1)^k*Zeta[k]^2/k, {k, 2, Infinity}, WorkingPrecision -> 200, NSumTerms -> 100000]
  • PARI
    sumalt(k=2, (-1)^k*zeta(k)^2/k) \\ Michel Marcus, Mar 09 2019

Formula

Equals log(A306765) + A001620^2.

A306765 Decimal expansion of lim_{k->oo} (k^A001620 / k!) * Product_{j=1..k} Gamma(1/j).

Original entry on oeis.org

2, 0, 3, 4, 4, 4, 8, 9, 4, 5, 4, 8, 7, 6, 1, 6, 4, 7, 7, 9, 8, 0, 3, 5, 5, 5, 3, 1, 8, 8, 6, 9, 0, 2, 6, 3, 5, 5, 9, 7, 9, 4, 3, 9, 8, 6, 3, 7, 0, 2, 3, 7, 6, 2, 6, 0, 0, 0, 5, 2, 8, 4, 1, 6, 5, 6, 5, 0, 0, 7, 8, 2, 7, 7, 5, 7, 1, 1, 3, 2, 4, 4, 5, 0, 2, 6, 5, 0, 4, 0, 6, 1, 3, 5, 0, 7, 5, 0, 2, 9, 1, 2, 7, 1, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 08 2019

Keywords

Examples

			2.0344489454876164779803555318869026355979439863702376260005284165650078277571...
		

Crossrefs

Programs

  • Maple
    evalf(exp(-gamma^2 + Sum((-1)^j*Zeta(j)^2/j, j=2..infinity)), 100);
  • Mathematica
    slogam = Table[Sum[LogGamma[1/j], {j, 1, n}], {n, 1, 1000}]; $MaxExtraPrecision = 1000; funs[n_] := E^slogam[[n]] * n^EulerGamma/n!; Do[Print[N[Sum[(-1)^(m + j) * funs[j*Floor[Length[slogam]/m]] * (j^(m - 1)/(j - 1)!/(m - j)!), {j, 1, m}], 80]], {m, 10, 100, 10}]
  • PARI
    exp(-Euler^2 + sumalt(j=2, (-1)^j*zeta(j)^2/j))

Formula

Equals exp(-gamma^2 + Sum_{j>=2} (-1)^j*Zeta(j)^2/j), where gamma is the Euler-Mascheroni constant A001620.
Equals exp(-gamma^2 + A306769).
Equals lim_{k->oo} k^(k*(2*k+1) + 2*gamma) * (2*Pi)^k * exp(1/6 + log(k)^2 - 2*k^2) / A306760(k).

A306789 a(n) = Product_{k=0..n} binomial(n + k, n).

Original entry on oeis.org

1, 2, 18, 800, 183750, 224042112, 1475939646720, 53195808994099200, 10587785727897772143750, 11721562427290210695200000000, 72596493516095364770534596279431168, 2527156530619699341247423878706695556300800, 496395279097923766533851314609410101501472675840000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 10 2019

Keywords

Comments

Sum_{k=0..n} binomial(n + k, n) = binomial(2*n + 1, n).
Product_{k=1..n} binomial(k*n, n) = (n^2)! / (n!)^n.

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[n+k, n], {k, 0, n}], {n, 0, 13}]
    Table[(n+1)^n * BarnesG[2*n+2] / (Gamma[n+2]^n * BarnesG[n+2]^2), {n, 0, 13}]
  • Python
    from math import factorial
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A306789(n): return A306789(n-1)*2*n*factorial(2*n-1)**2//factorial(n)**3//n**(n-1) if n else 1 # Chai Wah Wu, Jun 26 2023

Formula

a(n) = (n+1)^n * BarnesG(2*n+2) / (Gamma(n+2)^n * BarnesG(n+2)^2).
a(n) ~ A * 2^(2*n^2 + 3*n/2 - 1/12) / (exp(n^2/2 + 1/6) * Pi^((n+1)/2) * n^(n/2 + 5/12)), where A is the Glaisher-Kinkelin constant A074962.
a(n) = a(n-1)*2n*(2n-1)!^2/(n!^3*n^(n-1)). - Chai Wah Wu, Jun 26 2023

A306907 a(n) = Product_{i=0..n, j=0..n, k=0..n} (i*j*k + 1).

Original entry on oeis.org

1, 2, 60750, 193002701276968128000000, 5076574217867350877310882935055477754989937924247841796875000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2019

Keywords

Comments

Next term is too long to be included.

Crossrefs

Programs

  • Mathematica
    Table[Product[i*j*k+1,{i,0,n},{j,0,n},{k,0,n}],{n,0,5}]

Formula

a(n) = (n!)^(3*n^2) * Product_{i=1..n, j=1..n, k=1..n} (1 + 1/(i*j*k)).
a(n) ~ exp(3*n^2*log(Gamma(n+1)) + (gamma + PolyGamma(0, n+1))^3 - c), where gamma is the Euler-Mascheroni constant A001620 and c = A307106 = Sum_{k>=2} (-1)^k * Zeta(k)^3 / k = 1.836921908595663783265640880112170343162564662453544904457...
a(n) ~ (2*Pi)^(3*n^2/2) * exp(-3*n^3 + n/4 + (log(n))^3 + 3*gamma*(log(n))^2 + gamma^3 - c) * n^(3*(n^3 + n^2/2 + gamma^2)).

A324589 a(n) = Product_{j=1..n, k=1..n} (1 + (j*k)^2).

Original entry on oeis.org

1, 2, 850, 9541930000, 62954953875193006250000, 2232026314050243695025069057306526600000000, 2378738322196706013428557679949358718247570924314917636028125000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Comments

Product_{j>=1, k>=1} (1 + 1/(j^3*k^3)) = 3.07044599622955113359633939413741321690850038945774000273914990604256664558...

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul((i*j)^2+1, i=1..n), j=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[j^2*k^2 + 1, {j, 1, n}, {k, 1, n}], {n, 1, 8}]
    Round[Table[Product[k^(1 + 2*n) * Gamma[1 - I/k + n] * Gamma[1 + I/k + n] * Sinh[Pi/k]/Pi, {k, 1, n}], {n, 1, 8}]]

Formula

a(n) ~ c * 4^n * Pi^(2*n) * n^(2*n*(2*n+1)) / exp(4*n^2), where c = 14.2467190172413789737182639605567415110439648274273645215657580983939589... = exp(1/3) * Product_{j>=1, k>=1} (1 + 1/(j^2*k^2)). - Vaclav Kotesovec, Mar 28 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A324590 a(n) = n!^(4*n) * Product_{k=1..n} binomial(n + 1/k^2, n).

Original entry on oeis.org

1, 2, 1080, 16133644800, 139256878046022696960000, 6288402750181849898716908922601472000000000, 8322157105451357856813375261666887975745751468393837363200000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!^(4*n)*mul(binomial(n+1/k^2, n), k=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[n!^(4*n) * Product[Binomial[1/k^2 + n, n], {k, 1, n}], {n, 1, 8}]

Formula

a(n) ~ n!^(4*n) * n^(Pi^2/6) / A303670.
a(n) ~ n^(4*n^2 + 2*n + Pi^2/6) * (2*Pi)^(2*n) / exp(4*n^2 - 1/3 - gamma*Pi^2/6 + c), where gamma is the Euler-Mascheroni constant A001620 and c = A306774 = Sum_{k>=2} (-1)^k * Zeta(k) * Zeta(2*k) / k.
a(n) = n!^n * A324596(n).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A324596 a(n) = n!^(3*n) * Product_{k=1..n} binomial(n + 1/k^2, n).

Original entry on oeis.org

1, 2, 270, 74692800, 419731620267960000, 252716802910471719823692648960000, 59736659298524125157504488525739821430187940800000000, 16079377413231597423103950774423398920424350187193326745026311068057600000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!^(3*n)*mul(binomial(n+1/k^2, n), k=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[n!^(3*n) * Product[Binomial[n + 1/k^2, n], {k, 1, n}], {n, 1, 8}]

Formula

a(n) ~ n!^(3*n) * n^(Pi^2/6) / A303670.
a(n) ~ n^(3*n*(2*n+1)/2 + Pi^2/6) * (2*Pi)^(3*n/2) / exp(3*n^2 - 1/4 - gamma*Pi^2/6 + c), where gamma is the Euler-Mascheroni constant A001620 and c = A306774 = Sum_{k>=2} (-1)^k * Zeta(k) * Zeta(2*k) / k.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A324597 a(n) = n!^(4*n) * Product_{k=1..n} binomial(n + 1/k^3, n).

Original entry on oeis.org

1, 2, 918, 11592504000, 86712397842439769400000, 3472997049383321958747830928094241894400000, 4152034082374349458781848863476555783741415883758270213129361920000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Comments

In general, for m > 1, Product_{k=1..n} binomial(n + 1/k^m, n) ~ n^Zeta(m) / c(m), where c(m) = Product_{j>=1} Gamma(1 + 1/j^m).
Equivalently, c(m) = -gamma * Zeta(m) + Sum_{k>=2} (-1)^k*Zeta(k)*Zeta(m*k)/k, where gamma is the Euler-Mascheroni constant A001620.

Crossrefs

Programs

  • Maple
    a:= n-> n!^(4*n)*mul(binomial(n+1/k^3, n), k=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[n!^(4*n) * Product[Binomial[n + 1/j^3, n], {j, 1, n}], {n, 1, 8}]

Formula

a(n) ~ n!^(4*n) * n^Zeta(3) / (Product_{j>=1} Gamma(1 + 1/j^3)).
a(n) ~ n^(4*n^2 + 2*n + Zeta(3)) * (2*Pi)^(2*n) / exp(4*n^2 - 1/3 - gamma*Zeta(3) + c), where c = A306778 = Sum_{k>=2} (-1)^k*Zeta(k)*Zeta(3*k)/k.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A325049 a(n) = Product_{i=0..n, j=0..n} (i!*j! + 1).

Original entry on oeis.org

2, 16, 6480, 97287175440, 1106928595945936328906250000, 856337316801926460412829104011102303451051923953906250000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[i!*j! + 1, {i, 0, n}, {j, 0, n}], {n, 0, 7}]
    Table[BarnesG[n+2]^(2*n+2) * Product[1 + 1/(i!*j!), {i, 0, n}, {j, 0, n}], {n, 0, 7}]
  • Python
    from math import prod, factorial as f
    def a(n): return prod(f(i)*f(j)+1 for i in range(n) for j in range(n))
    print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Feb 16 2021

Formula

a(n) ~ c * (2*Pi)^((n+1)^2) * n^((n+1)*(6*n^2 + 12*n + 5)/6) / (A^(2*n+2) * exp(3*n^3/2 + 7*n^2/2 + 11*n/6 - 1/3)), where c = Product_{i>=0, j>=0} (1 + 1/(i!*j!)) = 297.557220207478770881166673701943476275955597334672817171839377... and A is the Glaisher-Kinkelin constant A074962.
Showing 1-9 of 9 results.