cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306778 Decimal expansion of Sum_{k>=2} (-1)^k * zeta(k) * zeta(3*k) / k.

Original entry on oeis.org

5, 9, 0, 7, 3, 5, 8, 5, 5, 5, 1, 1, 9, 8, 4, 2, 5, 1, 5, 9, 0, 4, 3, 4, 8, 2, 0, 5, 9, 7, 7, 4, 6, 7, 9, 4, 4, 2, 9, 7, 5, 6, 9, 9, 9, 9, 6, 3, 9, 3, 2, 3, 2, 7, 4, 6, 3, 4, 0, 1, 4, 1, 7, 6, 1, 4, 1, 2, 9, 2, 1, 9, 5, 5, 6, 0, 9, 7, 6, 7, 0, 8, 6, 2, 1, 8, 7, 2, 1, 5, 1, 4, 7, 9, 4, 2, 0, 8, 2, 4, 9, 0, 6, 6, 0, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Examples

			0.590735855511984251590434820597746794429756999963932327463401417614129...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^k*Zeta(k)*Zeta(3*k)/k, k=2..infinity), 120);
  • PARI
    sumalt(k=2, (-1)^k*zeta(k)*zeta(3*k)/k)

A324596 a(n) = n!^(3*n) * Product_{k=1..n} binomial(n + 1/k^2, n).

Original entry on oeis.org

1, 2, 270, 74692800, 419731620267960000, 252716802910471719823692648960000, 59736659298524125157504488525739821430187940800000000, 16079377413231597423103950774423398920424350187193326745026311068057600000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!^(3*n)*mul(binomial(n+1/k^2, n), k=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[n!^(3*n) * Product[Binomial[n + 1/k^2, n], {k, 1, n}], {n, 1, 8}]

Formula

a(n) ~ n!^(3*n) * n^(Pi^2/6) / A303670.
a(n) ~ n^(3*n*(2*n+1)/2 + Pi^2/6) * (2*Pi)^(3*n/2) / exp(3*n^2 - 1/4 - gamma*Pi^2/6 + c), where gamma is the Euler-Mascheroni constant A001620 and c = A306774 = Sum_{k>=2} (-1)^k * Zeta(k) * Zeta(2*k) / k.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
Showing 1-2 of 2 results.