cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A306774 Decimal expansion of Sum_{k>=2} (-1)^k * zeta(k) * zeta(2*k) / k.

Original entry on oeis.org

6, 3, 8, 9, 0, 6, 1, 6, 2, 6, 1, 6, 2, 7, 4, 0, 9, 1, 2, 0, 6, 3, 9, 8, 2, 7, 8, 1, 4, 1, 1, 1, 7, 4, 9, 8, 8, 2, 8, 4, 3, 8, 9, 1, 3, 1, 3, 5, 1, 1, 5, 9, 8, 3, 5, 1, 8, 5, 5, 4, 5, 4, 5, 0, 5, 4, 8, 3, 1, 7, 6, 2, 0, 9, 0, 6, 3, 0, 8, 4, 6, 3, 0, 7, 3, 5, 2, 9, 1, 8, 3, 9, 6, 4, 4, 7, 5, 5, 2, 4, 3, 6, 2, 5, 6, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Examples

			0.63890616261627409120639827814111749882843891313511598351855454505483176209...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^k*Zeta(k)*Zeta(2*k)/k, k=2..infinity), 100);
  • PARI
    sumalt(k=2, (-1)^k*zeta(k)*zeta(2*k)/k)

Formula

Equals log(A303670) + A001620 * Pi^2/6.

A306769 Decimal expansion of Sum_{k>=2} (-1)^k * Zeta(k)^2 / k.

Original entry on oeis.org

1, 0, 4, 3, 4, 0, 2, 9, 1, 7, 5, 7, 4, 2, 8, 8, 7, 3, 3, 2, 5, 5, 2, 8, 9, 6, 4, 6, 6, 7, 1, 6, 7, 6, 0, 3, 0, 5, 4, 8, 4, 7, 0, 8, 6, 6, 0, 4, 6, 8, 8, 2, 5, 6, 1, 0, 4, 4, 5, 7, 0, 4, 7, 9, 7, 6, 9, 5, 8, 5, 0, 6, 2, 5, 5, 2, 5, 2, 4, 8, 4, 3, 2, 7, 6, 1, 5, 1, 0, 7, 2, 0, 7, 9, 8, 4, 1, 4, 3, 5, 6, 2, 1, 4, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Comments

Sum_{k>=2} (-1)^k*Zeta(k)/k = A001620 (see MathWorld, formula 122).

Examples

			1.043402917574288733255289646671676030548470866046882561044570479769585...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^j*Zeta(j)^2/j, j=2..infinity), 100);
  • Mathematica
    NSum[(-1)^k*Zeta[k]^2/k, {k, 2, Infinity}, WorkingPrecision -> 200, NSumTerms -> 100000]
  • PARI
    sumalt(k=2, (-1)^k*zeta(k)^2/k) \\ Michel Marcus, Mar 09 2019

Formula

Equals log(A306765) + A001620^2.

A307106 Decimal expansion of Sum_{k>=2} (-1)^k * Zeta(k)^3 / k.

Original entry on oeis.org

1, 8, 3, 6, 9, 2, 1, 9, 0, 8, 5, 9, 5, 6, 6, 3, 7, 8, 3, 2, 6, 5, 6, 4, 0, 8, 8, 0, 1, 1, 2, 1, 7, 0, 3, 4, 3, 1, 6, 2, 5, 6, 4, 6, 6, 2, 4, 5, 3, 5, 4, 4, 9, 0, 4, 4, 5, 7, 0, 4, 1, 7, 2, 7, 5, 9, 7, 0, 7, 9, 3, 4, 8, 9, 6, 5, 5, 1, 3, 5, 1, 8, 7, 5, 3, 0, 9, 6, 3, 6, 4, 4, 4, 7, 3, 6, 8, 0, 4, 2, 4, 7, 8, 5, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 25 2019

Keywords

Comments

Sum_{k>=2} (-1)^k*Zeta(k)/k = A001620 (see MathWorld, formula 122).

Examples

			1.8369219085956637832656408801121703431625646624535449044570417275970793489...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^j*Zeta(j)^3/j, j=2..infinity), 120);
  • Mathematica
    NSum[(-1)^k*Zeta[k]^3/k, {k, 2, Infinity}, WorkingPrecision -> 200, NSumTerms -> 100000]
  • PARI
    sumalt(k=2, (-1)^k*zeta(k)^3/k)

A324597 a(n) = n!^(4*n) * Product_{k=1..n} binomial(n + 1/k^3, n).

Original entry on oeis.org

1, 2, 918, 11592504000, 86712397842439769400000, 3472997049383321958747830928094241894400000, 4152034082374349458781848863476555783741415883758270213129361920000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Comments

In general, for m > 1, Product_{k=1..n} binomial(n + 1/k^m, n) ~ n^Zeta(m) / c(m), where c(m) = Product_{j>=1} Gamma(1 + 1/j^m).
Equivalently, c(m) = -gamma * Zeta(m) + Sum_{k>=2} (-1)^k*Zeta(k)*Zeta(m*k)/k, where gamma is the Euler-Mascheroni constant A001620.

Crossrefs

Programs

  • Maple
    a:= n-> n!^(4*n)*mul(binomial(n+1/k^3, n), k=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[n!^(4*n) * Product[Binomial[n + 1/j^3, n], {j, 1, n}], {n, 1, 8}]

Formula

a(n) ~ n!^(4*n) * n^Zeta(3) / (Product_{j>=1} Gamma(1 + 1/j^3)).
a(n) ~ n^(4*n^2 + 2*n + Zeta(3)) * (2*Pi)^(2*n) / exp(4*n^2 - 1/3 - gamma*Zeta(3) + c), where c = A306778 = Sum_{k>=2} (-1)^k*Zeta(k)*Zeta(3*k)/k.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
Showing 1-4 of 4 results.