cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A303670 Decimal expansion of Product_{k>=1} Gamma(1 + 1/k^2).

Original entry on oeis.org

7, 3, 3, 0, 2, 4, 9, 4, 3, 3, 8, 5, 8, 3, 0, 1, 6, 9, 1, 0, 9, 4, 5, 9, 9, 2, 8, 8, 4, 7, 8, 0, 9, 9, 3, 4, 9, 8, 4, 5, 3, 3, 8, 3, 5, 0, 5, 0, 0, 1, 0, 2, 2, 1, 9, 8, 2, 2, 3, 0, 0, 5, 9, 6, 1, 7, 2, 4, 1, 6, 2, 7, 2, 0, 2, 0, 5, 9, 0, 9, 6, 0, 2, 2, 2, 1, 5, 2, 0, 0, 3, 9, 5, 6, 8, 9, 2, 2, 9, 2, 7, 2, 6, 1, 2, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 28 2018

Keywords

Examples

			0.73302494338583016910945992884780993498453383505001022198223...
		

Crossrefs

Programs

  • Maple
    Digits := 120: evalf(product(GAMMA(1+1/n^2), n = 1..infinity));
    evalf(exp(-gamma*Pi^2/6 + Sum((-1)^k*Zeta(k)*Zeta(2*k)/k, k=2..infinity)), 121); # Vaclav Kotesovec, Mar 09 2019
  • Mathematica
    RealDigits[NProduct[Gamma[1 + 1/n^2], {n, 1, Infinity}, WorkingPrecision -> 120, NProductFactors -> 1000], 10, 70][[1]]
  • PARI
    exp(-Euler*Pi^2/6 + sumalt(k=2, (-1)^k*zeta(k)*zeta(2*k)/k)) \\ Vaclav Kotesovec, Mar 09 2019

Formula

Equals Product_{k>=1} Gamma(1/k^2) / k^2.
Equals exp(-gamma*Pi^2/6 + Sum_{k>=2} (-1)^k*zeta(k)*zeta(2*k)/k), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 09 2019
Equals exp(-gamma*Pi^2/6 + A306774).

A306769 Decimal expansion of Sum_{k>=2} (-1)^k * Zeta(k)^2 / k.

Original entry on oeis.org

1, 0, 4, 3, 4, 0, 2, 9, 1, 7, 5, 7, 4, 2, 8, 8, 7, 3, 3, 2, 5, 5, 2, 8, 9, 6, 4, 6, 6, 7, 1, 6, 7, 6, 0, 3, 0, 5, 4, 8, 4, 7, 0, 8, 6, 6, 0, 4, 6, 8, 8, 2, 5, 6, 1, 0, 4, 4, 5, 7, 0, 4, 7, 9, 7, 6, 9, 5, 8, 5, 0, 6, 2, 5, 5, 2, 5, 2, 4, 8, 4, 3, 2, 7, 6, 1, 5, 1, 0, 7, 2, 0, 7, 9, 8, 4, 1, 4, 3, 5, 6, 2, 1, 4, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Comments

Sum_{k>=2} (-1)^k*Zeta(k)/k = A001620 (see MathWorld, formula 122).

Examples

			1.043402917574288733255289646671676030548470866046882561044570479769585...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^j*Zeta(j)^2/j, j=2..infinity), 100);
  • Mathematica
    NSum[(-1)^k*Zeta[k]^2/k, {k, 2, Infinity}, WorkingPrecision -> 200, NSumTerms -> 100000]
  • PARI
    sumalt(k=2, (-1)^k*zeta(k)^2/k) \\ Michel Marcus, Mar 09 2019

Formula

Equals log(A306765) + A001620^2.

A306778 Decimal expansion of Sum_{k>=2} (-1)^k * zeta(k) * zeta(3*k) / k.

Original entry on oeis.org

5, 9, 0, 7, 3, 5, 8, 5, 5, 5, 1, 1, 9, 8, 4, 2, 5, 1, 5, 9, 0, 4, 3, 4, 8, 2, 0, 5, 9, 7, 7, 4, 6, 7, 9, 4, 4, 2, 9, 7, 5, 6, 9, 9, 9, 9, 6, 3, 9, 3, 2, 3, 2, 7, 4, 6, 3, 4, 0, 1, 4, 1, 7, 6, 1, 4, 1, 2, 9, 2, 1, 9, 5, 5, 6, 0, 9, 7, 6, 7, 0, 8, 6, 2, 1, 8, 7, 2, 1, 5, 1, 4, 7, 9, 4, 2, 0, 8, 2, 4, 9, 0, 6, 6, 0, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Examples

			0.590735855511984251590434820597746794429756999963932327463401417614129...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^k*Zeta(k)*Zeta(3*k)/k, k=2..infinity), 120);
  • PARI
    sumalt(k=2, (-1)^k*zeta(k)*zeta(3*k)/k)

A307106 Decimal expansion of Sum_{k>=2} (-1)^k * Zeta(k)^3 / k.

Original entry on oeis.org

1, 8, 3, 6, 9, 2, 1, 9, 0, 8, 5, 9, 5, 6, 6, 3, 7, 8, 3, 2, 6, 5, 6, 4, 0, 8, 8, 0, 1, 1, 2, 1, 7, 0, 3, 4, 3, 1, 6, 2, 5, 6, 4, 6, 6, 2, 4, 5, 3, 5, 4, 4, 9, 0, 4, 4, 5, 7, 0, 4, 1, 7, 2, 7, 5, 9, 7, 0, 7, 9, 3, 4, 8, 9, 6, 5, 5, 1, 3, 5, 1, 8, 7, 5, 3, 0, 9, 6, 3, 6, 4, 4, 4, 7, 3, 6, 8, 0, 4, 2, 4, 7, 8, 5, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 25 2019

Keywords

Comments

Sum_{k>=2} (-1)^k*Zeta(k)/k = A001620 (see MathWorld, formula 122).

Examples

			1.8369219085956637832656408801121703431625646624535449044570417275970793489...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^j*Zeta(j)^3/j, j=2..infinity), 120);
  • Mathematica
    NSum[(-1)^k*Zeta[k]^3/k, {k, 2, Infinity}, WorkingPrecision -> 200, NSumTerms -> 100000]
  • PARI
    sumalt(k=2, (-1)^k*zeta(k)^3/k)

A324590 a(n) = n!^(4*n) * Product_{k=1..n} binomial(n + 1/k^2, n).

Original entry on oeis.org

1, 2, 1080, 16133644800, 139256878046022696960000, 6288402750181849898716908922601472000000000, 8322157105451357856813375261666887975745751468393837363200000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!^(4*n)*mul(binomial(n+1/k^2, n), k=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[n!^(4*n) * Product[Binomial[1/k^2 + n, n], {k, 1, n}], {n, 1, 8}]

Formula

a(n) ~ n!^(4*n) * n^(Pi^2/6) / A303670.
a(n) ~ n^(4*n^2 + 2*n + Pi^2/6) * (2*Pi)^(2*n) / exp(4*n^2 - 1/3 - gamma*Pi^2/6 + c), where gamma is the Euler-Mascheroni constant A001620 and c = A306774 = Sum_{k>=2} (-1)^k * Zeta(k) * Zeta(2*k) / k.
a(n) = n!^n * A324596(n).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A324596 a(n) = n!^(3*n) * Product_{k=1..n} binomial(n + 1/k^2, n).

Original entry on oeis.org

1, 2, 270, 74692800, 419731620267960000, 252716802910471719823692648960000, 59736659298524125157504488525739821430187940800000000, 16079377413231597423103950774423398920424350187193326745026311068057600000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!^(3*n)*mul(binomial(n+1/k^2, n), k=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[n!^(3*n) * Product[Binomial[n + 1/k^2, n], {k, 1, n}], {n, 1, 8}]

Formula

a(n) ~ n!^(3*n) * n^(Pi^2/6) / A303670.
a(n) ~ n^(3*n*(2*n+1)/2 + Pi^2/6) * (2*Pi)^(3*n/2) / exp(3*n^2 - 1/4 - gamma*Pi^2/6 + c), where gamma is the Euler-Mascheroni constant A001620 and c = A306774 = Sum_{k>=2} (-1)^k * Zeta(k) * Zeta(2*k) / k.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
Showing 1-6 of 6 results.