cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A306774 Decimal expansion of Sum_{k>=2} (-1)^k * zeta(k) * zeta(2*k) / k.

Original entry on oeis.org

6, 3, 8, 9, 0, 6, 1, 6, 2, 6, 1, 6, 2, 7, 4, 0, 9, 1, 2, 0, 6, 3, 9, 8, 2, 7, 8, 1, 4, 1, 1, 1, 7, 4, 9, 8, 8, 2, 8, 4, 3, 8, 9, 1, 3, 1, 3, 5, 1, 1, 5, 9, 8, 3, 5, 1, 8, 5, 5, 4, 5, 4, 5, 0, 5, 4, 8, 3, 1, 7, 6, 2, 0, 9, 0, 6, 3, 0, 8, 4, 6, 3, 0, 7, 3, 5, 2, 9, 1, 8, 3, 9, 6, 4, 4, 7, 5, 5, 2, 4, 3, 6, 2, 5, 6, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Examples

			0.63890616261627409120639827814111749882843891313511598351855454505483176209...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^k*Zeta(k)*Zeta(2*k)/k, k=2..infinity), 100);
  • PARI
    sumalt(k=2, (-1)^k*zeta(k)*zeta(2*k)/k)

Formula

Equals log(A303670) + A001620 * Pi^2/6.

A306765 Decimal expansion of lim_{k->oo} (k^A001620 / k!) * Product_{j=1..k} Gamma(1/j).

Original entry on oeis.org

2, 0, 3, 4, 4, 4, 8, 9, 4, 5, 4, 8, 7, 6, 1, 6, 4, 7, 7, 9, 8, 0, 3, 5, 5, 5, 3, 1, 8, 8, 6, 9, 0, 2, 6, 3, 5, 5, 9, 7, 9, 4, 3, 9, 8, 6, 3, 7, 0, 2, 3, 7, 6, 2, 6, 0, 0, 0, 5, 2, 8, 4, 1, 6, 5, 6, 5, 0, 0, 7, 8, 2, 7, 7, 5, 7, 1, 1, 3, 2, 4, 4, 5, 0, 2, 6, 5, 0, 4, 0, 6, 1, 3, 5, 0, 7, 5, 0, 2, 9, 1, 2, 7, 1, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 08 2019

Keywords

Examples

			2.0344489454876164779803555318869026355979439863702376260005284165650078277571...
		

Crossrefs

Programs

  • Maple
    evalf(exp(-gamma^2 + Sum((-1)^j*Zeta(j)^2/j, j=2..infinity)), 100);
  • Mathematica
    slogam = Table[Sum[LogGamma[1/j], {j, 1, n}], {n, 1, 1000}]; $MaxExtraPrecision = 1000; funs[n_] := E^slogam[[n]] * n^EulerGamma/n!; Do[Print[N[Sum[(-1)^(m + j) * funs[j*Floor[Length[slogam]/m]] * (j^(m - 1)/(j - 1)!/(m - j)!), {j, 1, m}], 80]], {m, 10, 100, 10}]
  • PARI
    exp(-Euler^2 + sumalt(j=2, (-1)^j*zeta(j)^2/j))

Formula

Equals exp(-gamma^2 + Sum_{j>=2} (-1)^j*Zeta(j)^2/j), where gamma is the Euler-Mascheroni constant A001620.
Equals exp(-gamma^2 + A306769).
Equals lim_{k->oo} k^(k*(2*k+1) + 2*gamma) * (2*Pi)^k * exp(1/6 + log(k)^2 - 2*k^2) / A306760(k).

A324590 a(n) = n!^(4*n) * Product_{k=1..n} binomial(n + 1/k^2, n).

Original entry on oeis.org

1, 2, 1080, 16133644800, 139256878046022696960000, 6288402750181849898716908922601472000000000, 8322157105451357856813375261666887975745751468393837363200000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!^(4*n)*mul(binomial(n+1/k^2, n), k=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[n!^(4*n) * Product[Binomial[1/k^2 + n, n], {k, 1, n}], {n, 1, 8}]

Formula

a(n) ~ n!^(4*n) * n^(Pi^2/6) / A303670.
a(n) ~ n^(4*n^2 + 2*n + Pi^2/6) * (2*Pi)^(2*n) / exp(4*n^2 - 1/3 - gamma*Pi^2/6 + c), where gamma is the Euler-Mascheroni constant A001620 and c = A306774 = Sum_{k>=2} (-1)^k * Zeta(k) * Zeta(2*k) / k.
a(n) = n!^n * A324596(n).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A324596 a(n) = n!^(3*n) * Product_{k=1..n} binomial(n + 1/k^2, n).

Original entry on oeis.org

1, 2, 270, 74692800, 419731620267960000, 252716802910471719823692648960000, 59736659298524125157504488525739821430187940800000000, 16079377413231597423103950774423398920424350187193326745026311068057600000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!^(3*n)*mul(binomial(n+1/k^2, n), k=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[n!^(3*n) * Product[Binomial[n + 1/k^2, n], {k, 1, n}], {n, 1, 8}]

Formula

a(n) ~ n!^(3*n) * n^(Pi^2/6) / A303670.
a(n) ~ n^(3*n*(2*n+1)/2 + Pi^2/6) * (2*Pi)^(3*n/2) / exp(3*n^2 - 1/4 - gamma*Pi^2/6 + c), where gamma is the Euler-Mascheroni constant A001620 and c = A306774 = Sum_{k>=2} (-1)^k * Zeta(k) * Zeta(2*k) / k.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A363684 Decimal expansion of Product_{k>=1} Gamma(2k/(2k-1)) / Gamma(1+1/(2k)).

Original entry on oeis.org

1, 0, 6, 2, 1, 5, 0, 9, 0, 5, 5, 7, 1, 0, 5, 7, 2, 8, 0, 6, 9, 6, 8, 3, 7, 3, 6, 2, 9, 3, 8, 0, 9, 9, 9, 0, 4, 2, 5, 2, 0, 7, 9, 5, 5, 2, 0, 0, 4, 5, 6, 9, 3, 3, 3, 4, 0, 7, 9, 8, 7, 0, 0, 9, 0, 5, 3, 7, 9, 8, 9, 3, 7, 0, 7, 7, 1, 4, 0, 8, 2, 9, 1, 9, 3, 6, 1, 8, 2, 5, 3, 6, 8, 6, 6, 9, 3, 1, 7, 7, 6, 0, 2, 1, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Jun 15 2023

Keywords

Examples

			1.06215090557105728069683736293...
		

Crossrefs

Cf. A303670.

Programs

  • Maple
    evalf(Product(2*k*GAMMA(1/(2*k - 1))/((2*k - 1)*GAMMA(1/(2*k))), k = 1..infinity), 120); # Vaclav Kotesovec, Jun 10 2024
  • PARI
    default(realprecision, 200); exp(sumpos(k=1, log(2*k) + log(gamma(1/(2*k-1))) - log(2*k-1) - log(gamma(1/(2*k))) )) \\ Vaclav Kotesovec, Jun 10 2024

Extensions

More terms from Vaclav Kotesovec, Jun 10 2024
Showing 1-5 of 5 results.