cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306769 Decimal expansion of Sum_{k>=2} (-1)^k * Zeta(k)^2 / k.

Original entry on oeis.org

1, 0, 4, 3, 4, 0, 2, 9, 1, 7, 5, 7, 4, 2, 8, 8, 7, 3, 3, 2, 5, 5, 2, 8, 9, 6, 4, 6, 6, 7, 1, 6, 7, 6, 0, 3, 0, 5, 4, 8, 4, 7, 0, 8, 6, 6, 0, 4, 6, 8, 8, 2, 5, 6, 1, 0, 4, 4, 5, 7, 0, 4, 7, 9, 7, 6, 9, 5, 8, 5, 0, 6, 2, 5, 5, 2, 5, 2, 4, 8, 4, 3, 2, 7, 6, 1, 5, 1, 0, 7, 2, 0, 7, 9, 8, 4, 1, 4, 3, 5, 6, 2, 1, 4, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Comments

Sum_{k>=2} (-1)^k*Zeta(k)/k = A001620 (see MathWorld, formula 122).

Examples

			1.043402917574288733255289646671676030548470866046882561044570479769585...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^j*Zeta(j)^2/j, j=2..infinity), 100);
  • Mathematica
    NSum[(-1)^k*Zeta[k]^2/k, {k, 2, Infinity}, WorkingPrecision -> 200, NSumTerms -> 100000]
  • PARI
    sumalt(k=2, (-1)^k*zeta(k)^2/k) \\ Michel Marcus, Mar 09 2019

Formula

Equals log(A306765) + A001620^2.

A306907 a(n) = Product_{i=0..n, j=0..n, k=0..n} (i*j*k + 1).

Original entry on oeis.org

1, 2, 60750, 193002701276968128000000, 5076574217867350877310882935055477754989937924247841796875000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2019

Keywords

Comments

Next term is too long to be included.

Crossrefs

Programs

  • Mathematica
    Table[Product[i*j*k+1,{i,0,n},{j,0,n},{k,0,n}],{n,0,5}]

Formula

a(n) = (n!)^(3*n^2) * Product_{i=1..n, j=1..n, k=1..n} (1 + 1/(i*j*k)).
a(n) ~ exp(3*n^2*log(Gamma(n+1)) + (gamma + PolyGamma(0, n+1))^3 - c), where gamma is the Euler-Mascheroni constant A001620 and c = A307106 = Sum_{k>=2} (-1)^k * Zeta(k)^3 / k = 1.836921908595663783265640880112170343162564662453544904457...
a(n) ~ (2*Pi)^(3*n^2/2) * exp(-3*n^3 + n/4 + (log(n))^3 + 3*gamma*(log(n))^2 + gamma^3 - c) * n^(3*(n^3 + n^2/2 + gamma^2)).
Showing 1-2 of 2 results.