cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306760 a(n) = Product_{i=1..n, j=1..n} (i*j + 1).

Original entry on oeis.org

1, 2, 90, 705600, 4105057320000, 52487876090562232320000, 3487017405172854771910634342400000000, 2448893405298238642974553493547144534294528000000000000, 33257039167768610289435138215602132823918399655132218973388800000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 08 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i*j+1, i=1..n), j=1..n):
    seq(a(n), n=0..9);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[i*j + 1, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
    Table[n!^(2*n) * Product[Binomial[n + 1/j, n], {j, 1, n}], {n, 1, 10}]

Formula

a(n) ~ c * n^(n*(2*n+1) + 2*gamma) * (2*Pi)^n * exp(1/6 + log(n)^2 - 2*n^2), where c = 1/A306765 and gamma is the Euler-Mascheroni constant A001620.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A307106 Decimal expansion of Sum_{k>=2} (-1)^k * Zeta(k)^3 / k.

Original entry on oeis.org

1, 8, 3, 6, 9, 2, 1, 9, 0, 8, 5, 9, 5, 6, 6, 3, 7, 8, 3, 2, 6, 5, 6, 4, 0, 8, 8, 0, 1, 1, 2, 1, 7, 0, 3, 4, 3, 1, 6, 2, 5, 6, 4, 6, 6, 2, 4, 5, 3, 5, 4, 4, 9, 0, 4, 4, 5, 7, 0, 4, 1, 7, 2, 7, 5, 9, 7, 0, 7, 9, 3, 4, 8, 9, 6, 5, 5, 1, 3, 5, 1, 8, 7, 5, 3, 0, 9, 6, 3, 6, 4, 4, 4, 7, 3, 6, 8, 0, 4, 2, 4, 7, 8, 5, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 25 2019

Keywords

Comments

Sum_{k>=2} (-1)^k*Zeta(k)/k = A001620 (see MathWorld, formula 122).

Examples

			1.8369219085956637832656408801121703431625646624535449044570417275970793489...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^j*Zeta(j)^3/j, j=2..infinity), 120);
  • Mathematica
    NSum[(-1)^k*Zeta[k]^3/k, {k, 2, Infinity}, WorkingPrecision -> 200, NSumTerms -> 100000]
  • PARI
    sumalt(k=2, (-1)^k*zeta(k)^3/k)

A325051 a(n) = Product_{i=0..n, j=0..n, k=0..n} (i!*j!*k! + 1).

Original entry on oeis.org

2, 256, 19131876000000, 20879156515576282948808247752954619590255260568062500000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2019

Keywords

Comments

Next term is too long to be included.

Crossrefs

Programs

  • Mathematica
    Table[Product[i!*j!*k! + 1, {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 5}]
    Table[BarnesG[n+2]^(3*(n+1)^2) * Product[1 + 1/(i!*j!*k!), {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 5}]

Formula

a(n) ~ c * (2*Pi)^(3*n^3/2 + 9*n^2/2 + 9*n/2 + 3/2) * n^((n+1)^2*(6*n^2 + 12*n + 5)/4) / (A^(3*(n+1)^2) * exp(9*n^4/4 + 15*n^3/2 + 8*n^2 + 9*n/4 - 59/80)), where A is the Glaisher-Kinkelin constant A074962 and c = Product_{i>=0, j>=0, k>=0} (1 + 1/(i!*j!*k!)) = 10013049.64089403856780758322163675337812476527762657951330...
Showing 1-3 of 3 results.