cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A217900 O.g.f.: Sum_{n>=0} n^n * (n+1)^(n-1) * exp(-n*(n+1)*x) * x^n / n!.

Original entry on oeis.org

1, 1, 4, 38, 576, 12052, 322848, 10564304, 408903680, 18288706544, 928575662400, 52780935007968, 3321208845997056, 229232635832433664, 17221699990084108288, 1399139700462119135232, 122235936429355565580288, 11428226675376971405577984, 1138551595285580854471388160
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} (n+1)^(n-1) * exp(-(n+1)*x) * x^n/n!.
More generally, if we define a(n) for fixed integers m, t, and s>=0, by:
(0) Sum_{n>=0} m * n^(s*n) * (n*t+m)^(n-1) * exp(-n^s*(n*t+m)*x) * x^n/n! = Sum_{n>=0} a(n)*x^n
then the coefficients a(n) are integral and may be expressed by:
(1) a(n) = 1/n! * Sum_{k=0..n} m*(-1)^(n-k)*binomial(n,k) * k^(s*n) * (k*t+m)^(n-1).
(2) a(n) = 1/n! * [x^n] Sum_{k>=0} m*k^(s*k)*(k*t+m)^(k-1)*x^k / (1 + k^s*(k*t+m)*x)^(k+1).
(3) a(n) = 1/t^((s-1)*n) * [x^(s*n)] 1 + m*x*(1+m*x)^(n-1) / Product_{k=1..n} (1-k*t*x).
(4) a(n) = 1/t^((s-1)*n) * [x^(s*n)] 1 + m*x*(1-m*x)^(s*n) / Product_{k=1..n} (1-(k*t+m)*x).

Examples

			O.g.f.: A(x) = 1 + x + 4*x^2 + 38*x^3 + 576*x^4 + 12052*x^5 + 322848*x^6 +...
where
A(x) = 1 + 1^1*2^0*x*exp(-1*2*x) + 2^2*3^1*exp(-2*3*x)*x^2/2! + 3^3*4^2*exp(-3*4*x)*x^3/3! + 4^4*5^3*exp(-4*5*x)*x^4/4! + 5^5*6^4*exp(-5*6*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/n!*Sum[(-1)^(n-k)*Binomial[n, k]*k^n*(k+1)^(n-1), {k, 0, n}]; a[0]=1; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*(m+1)^(m-1)*x^m*exp(-m*(m+1)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, k^k*(k+1)^(k-1)*x^k/(1+k*(k+1)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^n*(k+1)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+x*(1+x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+x*(1-x)^n/prod(k=0, n, 1-(k+1)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n)=if(n==0,1,sum(k=0,n-1, binomial(n-1,k) * Stirling2(2*n-k-1,n)))} \\ Paul D. Hanna, Nov 13 2012
    /* PARI Programs for the General Case (START) ...................... */
    
  • PARI
    {a(n,m=1,t=1,s=1)=polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*exp(-k^s*(t*k+m)*x+x*O(x^n))*x^k/k!), n)}
    
  • PARI
    {a(n,m=1,t=1,s=1)=(1/n!)*polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*x^k/(1+k^s*(t*k+m)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n,m=1,t=1,s=1)=1/n!*sum(k=0, n, m*(-1)^(n-k)*binomial(n, k)*k^(s*n)*(t*k+m)^(n-1))}
    
  • PARI
    {a(n,m=1,t=1,s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1+m*x)^(n-1)/prod(k=0, n, 1-t*k*x +x*O(x^(s*n))), s*n)}
    
  • PARI
    {a(n,m=1,t=1,s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1-m*x)^(s*n)/prod(k=0, n, 1-(t*k+m)*x +x*O(x^(s*n))), s*n)}
    /* (END) ........................................................... */

Formula

a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * k^n * (k+1)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} k^k*(k+1)^(k-1)*x^k / (1 + k*(k+1)*x)^(k+1).
a(n) = [x^n] 1 + x*(1+x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + x*(1-x)^(n-1) / Product_{k=1..n} (1-(k+1)*x).
a(n) = A078739(n,n) for n>=1.
a(n) = Sum_{k=0..n-1} binomial(n-1,k) * Stirling2(2*n-k-1,n) for n>0, where Stirling2(n,k) = A008277(n,k). - Paul D. Hanna, Nov 13 2012
a(n) ~ 2^(2*n-1) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, May 09 2014

A226775 Decimal expansion of the number x other than -2 defined by x*exp(x) = -2/e^2.

Original entry on oeis.org

4, 0, 6, 3, 7, 5, 7, 3, 9, 9, 5, 9, 9, 5, 9, 9, 0, 7, 6, 7, 6, 9, 5, 8, 1, 2, 4, 1, 2, 4, 8, 3, 9, 7, 5, 8, 2, 1, 0, 9, 9, 7, 5, 7, 5, 1, 8, 1, 1, 4, 0, 6, 3, 5, 0, 0, 0, 4, 9, 5, 4, 8, 8, 3, 0, 3, 9, 1, 5, 0, 1, 5, 1, 8, 3, 8, 1, 2, 0, 4, 9, 7, 6, 7, 2, 5, 0, 0, 7, 2, 3, 3, 8, 1, 5, 5, 9, 2, 8, 5, 8, 2, 9, 3, 8
Offset: 0

Views

Author

Keywords

Examples

			-0.4063757399599599076769581241248397582109975751811406350004954883....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[ProductLog[-2/E^2], 105]][[1]] (* corrected by Vaclav Kotesovec, Feb 21 2014 *)
  • PARI
    solve(x=-1, x=0, x*exp(x) + 2*exp(-2)) \\ G. C. Greubel, Nov 15 2017

Formula

Equals -2*A106533.
Equals LambertW(-2*exp(-2)).

A226750 Decimal expansion of the number x other than -3 defined by x*e^x = -3/e^3.

Original entry on oeis.org

1, 7, 8, 5, 6, 0, 6, 2, 7, 8, 7, 7, 9, 2, 1, 1, 0, 6, 5, 9, 6, 8, 0, 8, 6, 6, 9, 7, 0, 5, 5, 1, 4, 8, 0, 4, 6, 5, 4, 1, 1, 8, 2, 5, 5, 9, 2, 6, 8, 8, 5, 9, 0, 7, 7, 2, 0, 1, 4, 2, 3, 0, 6, 0, 5, 8, 7, 8, 5, 6, 9, 5, 4, 9, 4, 4, 8, 2, 6, 0, 8, 7, 5, 4, 3, 1, 3, 4, 3, 4, 6, 5, 2, 1, 6, 0, 3, 5, 5, 6, 1, 0, 4, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			-0.178560627877921106596808669705514804654118255926885907720142306058785...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[ProductLog[-3/e^3], 105]][[1]]
  • PARI
    solve(x=0,1,3/exp(3)-x*exp(-x)) \\ Charles R Greathouse IV, Nov 19 2013

Extensions

Term a(104) corrected by G. C. Greubel, Nov 16 2017

A129506 Number of partitions of a {2n-1}-set into n nonempty subsets.

Original entry on oeis.org

1, 3, 25, 350, 6951, 179487, 5715424, 216627840, 9528822303, 477297033785, 26826851689001, 1672162773483930, 114485073343744260, 8541149231801585700, 689692892575539953400, 59932861644880019603520, 5576731051262006158950735, 553234633385550257808059085
Offset: 1

Views

Author

Paul D. Hanna, Apr 18 2007

Keywords

Comments

B^{-1}(x) = Sum_{n>0} a(n)/(2*n-1)!*(n-1)! x^n is inverse function for x*B(x), where B(x) is g.f. for Bernoulli number (see A027641). - Vladimir Kruchinin, Jan 19 2012

Examples

			G.f.: A(x) = x + 3*x^2 + 25*x^3 + 350*x^4 + 6951*x^5 + 179487*x^6 + ... where A(x) = 1^1*x*exp(-1^2*x) + 2^3*exp(-2^2*x)*x^2/2! + 3^5*exp(-3^2*x)*x^3/3! + 4^7*exp(-4^2*x)*x^4/4! + 5^9*exp(-5^2*x)*x^5/5! + ... forms a power series in x with integer coefficients. - _Paul D. Hanna_, Oct 15 2012
		

Crossrefs

Programs

  • Maple
    a:= n-> Stirling2(2*n-1, n):
    seq(a(n), n=1..25);  # Alois P. Heinz, Dec 15 2013
  • Mathematica
    a[n_] := Sum[ Binomial[2*n - 2, j]*StirlingS2[2*n - j - 2, n-1], {j, 0, n-1}]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Jun 14 2013, after Vladimir Kruchinin *)
    Table[StirlingS2[2*n-1,n], {n, 1, 20}] (* Vaclav Kotesovec, Dec 15 2013 *)
  • Maxima
    a(n):=((2*n-1)*((sum((stirling2(2*i-1, i)*binomial(2*n-2, 2*i-1)*stirling2(2*(n-i)-1, n-i-1))/((n-i-1)*binomial(n-1, i)), i, 1, n-2))+(n-1)* stirling2(2*n-3, n-1)+stirling2(2*n-2, n-1)))/(n);
      makelist(a(n),n,1,10); /* Vladimir Kruchinin, Feb 28 2013 */
  • PARI
    a(n)=polcoeff(1/prod(k=1,n,1-k*x +x*O(x^n)),n-1)
    
  • PARI
    vector(66, n, abs( stirling(2*n-1, n, 2) ) ) /* Joerg Arndt, Jun 09 2012 */
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^(2*n-1))} \\ Paul D. Hanna, Oct 15 2012
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m^(2*m-1)*x^m*exp(-m^2*x+x*O(x^n))/m!),n)}
    for(n=1,20,print1(a(n),", "))
    

Formula

Central Stirling numbers of the second kind: a(n) = A008277(2n-1,n) for n >= 1.
G.f.: Sum_{n>=1} n^(2*n-1) * exp(-n^2*x) * x^n / n!, an integer series. - Paul D. Hanna, Oct 15 2012
a(n) = 1/n! * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * k^(2*n-1). - Paul D. Hanna, Oct 15 2012
a(n) = ((2*n-1)*((sum(i=1..n-2, (stirling2(2*i-1,i)*C(2*n-2,2*i-1)*stirling2(2*(n-i)-1,n-i-1))/((n-i-1)*C(n-1,i))))+(n-1)*stirling2(2*n-3,n-1) +stirling2(2*n-2,n-1)))/n. - Vladimir Kruchinin, Feb 28 2013
a(n-1) = sum(j=0..n, binomial(2*n,j)*stirling2(2*n-j,n)). - Vladimir Kruchinin, Jun 14 2013
a(n) ~ 2^(2*n-3/2) * n^(n-3/2) * (2-c)^(1-n) / (sqrt(Pi*(1-c)) * exp(n) * c^n), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, Dec 15 2013
a(n) = A258170(2*n-1,n). - Alois P. Heinz, Mar 16 2018

A217910 O.g.f.: Sum_{n>=0} n^n*(2*n+1)^(n-1) * exp(-n*(2*n+1)*x) * x^n / n!.

Original entry on oeis.org

1, 1, 7, 125, 3641, 148297, 7792275, 502572905, 38466067169, 3409770740129, 343687137315215, 38829855954523317, 4861184771611069929, 668044273723230765337, 99988042875734734075243, 16191529121372446646518737, 2820684538705808192370559425
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} (2*n+1)^(n-1) * exp(-(2*n+1)*x) * x^n/n!.

Examples

			O.g.f.: A(x) = 1 + x + 7*x^2 + 125*x^3 + 3641*x^4 + 148297*x^5 + 7792275*x^6 +...
where
A(x) = 1 + 1^1*3^0*x*exp(-1*3*x) + 2^2*5^1*exp(-2*5*x)*x^2/2! + 3^3*7^2*exp(-3*7*x)*x^3/3! + 4^4*9^3*exp(-4*9*x)*x^4/4! + 5^5*11^4*exp(-5*11*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,j]*2^j*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
  • PARI
    {a(n)=polcoeff(sum(k=0,n,k^k*(2*k+1)^(k-1)*x^k*exp(-k*(2*k+1)*x+x*O(x^n))/k!),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, k^k*(2*k+1)^(k-1)*x^k/(1+k*(2*k+1)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^n*(2*k+1)^(n-1))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(1+x*(1+x)^(n-1)/prod(k=0, n, 1-2*k*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(1+x*(1-x)^n/prod(k=0, n, 1-(2*k+1)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * k^n * (2*k+1)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} k^k*(2*k+1)^(k-1)*x^k / (1 + k*(2*k+1)*x)^(k+1).
a(n) = [x^n] 1 + x*(1+x)^(n-1) / Product_{k=1..n} (1 - 2*k*x).
a(n) = [x^n] 1 + x*(1-x)^(n-1) / Product_{k=1..n} (1 - (2*k+1)*x).
a(n) ~ 2^(3*n-9/4) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1/4)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, May 22 2014

A256500 Decimal expansion of the positive solution to x = 2*(1-exp(-x)).

Original entry on oeis.org

1, 5, 9, 3, 6, 2, 4, 2, 6, 0, 0, 4, 0, 0, 4, 0, 0, 9, 2, 3, 2, 3, 0, 4, 1, 8, 7, 5, 8, 7, 5, 1, 6, 0, 2, 4, 1, 7, 8, 9, 0, 0, 2, 4, 2, 4, 8, 1, 8, 8, 5, 9, 3, 6, 4, 9, 9, 9, 5, 0, 4, 5, 1, 1, 6, 9, 6, 0, 8, 4, 9, 8, 4, 8, 1, 6, 1, 8, 7, 9, 5, 0, 2, 3, 2, 7, 4, 9, 9, 2, 7, 6, 6, 1, 8, 4, 4, 0, 7, 1, 4, 1, 7, 0, 6
Offset: 1

Views

Author

Stanislav Sykora, Mar 31 2015

Keywords

Comments

Each of the positive solutions to x = q*(1-exp(-x)) obtained for q = 2, 3, 4, and 5, appears in several formulas pertinent to Planck's black-body radiation law. For a given q, the solution can be also written as q+W(-q/exp(q)), where W is the Lambert function. Here q = 2.
The constant appears in asymptotic formula for A007820. - Vladimir Reshetnikov, Oct 10 2016

Examples

			1.5936242600400400923230418758751602417890024248188593649995...
		

Crossrefs

Cf. A194567 (q=3), A256501 (q=4), A256502 (q=5).

Programs

  • Mathematica
    RealDigits[2 + LambertW[-2 Exp[-2]], 10, 100][[1]] (* Vladimir Reshetnikov, Oct 10 2016 *)
  • PARI
    a2=solve(x=0.1,10,x-2*(1-exp(-x))) \\ Use real precision in excess

Formula

Equals 2*(1-A106533). - Miko Labalan, Dec 18 2024
Equals log(A229553). - Hugo Pfoertner, Dec 19 2024

A226469 Decimal expansion of the maximum value reached by the function -2*x*log(x)-2*x*(1-x) in the interval (0,1].

Original entry on oeis.org

3, 2, 3, 8, 0, 5, 1, 1, 8, 9, 4, 5, 9, 5, 7, 4, 2, 9, 8, 2, 3, 6, 0, 0, 9, 8, 0, 9, 8, 7, 9, 7, 7, 2, 9, 0, 6, 0, 4, 5, 1, 0, 3, 3, 6, 0, 4, 8, 2, 5, 3, 8, 5, 5, 4, 1, 4, 2, 0, 3, 5, 9, 9, 4, 7, 0, 9, 8, 5, 0, 0, 7, 6, 9, 2, 5, 8, 3, 8, 0, 5, 2, 5, 7, 9, 5, 2, 2, 5, 8, 5, 8, 4, 1, 9, 7, 4, 6, 6, 1, 3, 8, 4, 3, 2
Offset: 0

Views

Author

Keywords

Comments

Equals 2(c-c^2) where c = A106533 (the rumor constant).

Examples

			0.3238051189459574298236009809879772906045103360482538554...
		

Crossrefs

Cf. A106533.

Programs

  • Mathematica
    EE = -1/2 ProductLog[-2/(E^2)]; RealDigits[N[2*(EE-EE^2),100]][[1]]
  • PARI
    {a = solve(x=0.1, x=0.5, 2*log(x) - 4*x + 4)}; -2*a*log(a)-2*a*(1-a) \\ G. C. Greubel, Nov 16 2017

Extensions

Offset corrected by Rick L. Shepherd, Jan 02 2014
More terms from Alois P. Heinz, Jan 11 2014

A282025 a(r) is the maximum number of secretaries for which the first r should be rejected, if selecting the one with the highest or lowest ranking are both considered a success.

Original entry on oeis.org

3, 8, 13, 18, 23, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 214, 219, 224, 229, 234, 239, 244, 249, 254, 259, 264, 269, 273, 278, 283
Offset: 0

Views

Author

N. J. A. Sloane, Feb 11 2017

Keywords

Comments

According to Bayon et al, the probability P(n,r) = 2*r*((r/n-1)+sum_{i=r..n-1} 1/i)/n of success in a generalized Secretary problem for a given number n of applicants has a maximum at some value of r, 1<=r
The Beatty sequence of A106533, b(n) = floor(n*A106533), is a good approximation to r for large n. So the indices n-1 of the steps where b(n) = b(n+1)-1 are an approximation to this sequence.
We added numbers 27, 86 and 91 that are apparently missing in the preprint. R. J. Mathar, Feb 22 2017

Crossrefs

Programs

  • Maple
    P := proc(n,
        option remember;
        local i;
        2*r/n*((r/n-1)+add(1/i,i=r..n-1)) ;
    end proc:
    Pmax := proc(n)
        option remember;
        local r;
        for r from 1 to n-1 do
            if P(n,r+1) < P(n,r) then
                return r ;
            end if;
        end do:
    end proc:
    A282025 := proc(r)
        local n ;
        if r = 0 then
            return 3;
        end if;
        for n from r+1 do
            if Pmax(n+1) = r+1 then
                return n;
            end if;
        end do:
        return -1 ;
    end proc:
    seq(A282025(r),r=0..80) ; # R. J. Mathar, Feb 22 2017
  • Mathematica
    P[n_, r_] := 2 r ((r/n - 1) + Sum[ 1/i, {i, r, n - 1}])/n; Function[s, {3}~Join~Map[-1 + Position[s, #][[1, 1]] &, Range@ Max@ s]]@ Map[Length@ TakeWhile[#, # == 0 &] &, Table[If[P[n, k + 1] < P[n, k], k, 0], {n, 300}, {k, n - 1}]] (* Michael De Vlieger, Feb 22 2017, after Maple *)

A307951 Decimal expansion of 1 - log(2)/log(-W(-2/e^2)), where W is Lambert's W function.

Original entry on oeis.org

1, 7, 6, 9, 7, 5, 5, 4, 9, 5, 5, 6, 4, 8, 0, 1, 2, 8, 0, 0, 5, 9, 5, 6, 1, 4, 5, 7, 9, 0, 5, 7, 8, 6, 6, 8, 3, 5, 2, 2, 2, 5, 1, 5, 1, 3, 0, 8, 8, 9, 7, 8, 6, 3, 0, 1, 5, 5, 1, 0, 1, 6, 8, 9, 6, 1, 4, 4, 1, 5
Offset: 1

Author

Keywords

Comments

Chang shows that a constant population of n individuals, with ancestors selected uniformly at random, converges in probability to a state where every individual leaves either no current ancestors or else is a common ancestor of all present individuals after k*log_2(n) generations, where k is this constant (see Theorem 2 in Chang link for precise statement).

Examples

			1.769755495564801280059561457905786683522251513088978630155101689614415...
A population of 1000 is expected to have identical ancestors after around k*log_2(1000) = 17.6... generations.
A population of a million is expected to have identical ancestors after around k*log_2(10^6) = 35.2... generations.
A population of a billion is expected to have identical ancestors after around k*log_2(10^9) = 52.9... generations.
A population of a trillion is expected to have identical ancestors after around k*log_2(10^12) = 70.5... generations.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 - Log[2]/Log[-ProductLog[-2/E^2]], 10, 120][[1]] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    1 - log(2)/log(-lambertw(-2/exp(2))) \\ Charles R Greathouse IV, Jan 24 2025
Showing 1-9 of 9 results.