cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A226775 Decimal expansion of the number x other than -2 defined by x*exp(x) = -2/e^2.

Original entry on oeis.org

4, 0, 6, 3, 7, 5, 7, 3, 9, 9, 5, 9, 9, 5, 9, 9, 0, 7, 6, 7, 6, 9, 5, 8, 1, 2, 4, 1, 2, 4, 8, 3, 9, 7, 5, 8, 2, 1, 0, 9, 9, 7, 5, 7, 5, 1, 8, 1, 1, 4, 0, 6, 3, 5, 0, 0, 0, 4, 9, 5, 4, 8, 8, 3, 0, 3, 9, 1, 5, 0, 1, 5, 1, 8, 3, 8, 1, 2, 0, 4, 9, 7, 6, 7, 2, 5, 0, 0, 7, 2, 3, 3, 8, 1, 5, 5, 9, 2, 8, 5, 8, 2, 9, 3, 8
Offset: 0

Views

Author

Keywords

Examples

			-0.4063757399599599076769581241248397582109975751811406350004954883....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[ProductLog[-2/E^2], 105]][[1]] (* corrected by Vaclav Kotesovec, Feb 21 2014 *)
  • PARI
    solve(x=-1, x=0, x*exp(x) + 2*exp(-2)) \\ G. C. Greubel, Nov 15 2017

Formula

Equals -2*A106533.
Equals LambertW(-2*exp(-2)).

A217913 O.g.f.: Sum_{n>=0} (n^3)^n * exp(-n^3*x) * x^n / n!.

Original entry on oeis.org

1, 1, 31, 3025, 611501, 210766920, 110687251039, 82310957214948, 82318282158320505, 106563273280541795575, 173373343599189364594756, 346289681454731077633095526, 833091176987705031151553054843, 2376102520162485084539597049185710
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 31*x^2 + 3025*x^3 + 611501*x^4 + ... + Stirling2(3*n, n)*x^n + ...
where
A(x) = 1 + 1^3*x*exp(-1^3*x) + 2^6*exp(-2^3*x)*x^2/2! + 3^9*exp(-3^3*x)*x^3/3! + 4^12*exp(-4^3*x)*x^4/4! + 5^15*exp(-5^3*x)*x^5/5! + ...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[3*n,n],{n,0,20}] (* Vaclav Kotesovec, Feb 28 2013 *)
  • Maxima
    makelist(stirling2(3*n, n), n, 0, 13); /* Martin Ettl, Oct 15 2012 */
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(k^3)^k*exp(-k^3*x +x*O(x^n))*x^k/k!),n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^3)^k*x^k/(1+k^3*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(3*n, n)}
    for(n=0,20,print1(a(n),", "))
    

Formula

a(n) = Stirling2(3*n, n).
a(n) = [x^(3*n)] (3*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(2*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^3)^k*x^k / (1 + k^3*x)^(k+1).
a(n) ~ 9^n*exp(n*(c+1))*n^(2*n)/((c+3)^(2*n)*sqrt(2*Pi*(c+1)*n)), where c = -0.1785606278779211... = LambertW(-3/exp(3)) = A226750. - Vaclav Kotesovec, Feb 28 2013

A305140 O.g.f. A(x) satisfies: 0 = [x^n] exp( n^3 * Integral A(x)^2 dx ) / A(x), for n > 0.

Original entry on oeis.org

1, 1, 33, 3422, 710395, 245288190, 127281447538, 92967363233586, 91202509214139831, 115939599286159123295, 185623891076803234259504, 365706330842590993758556662, 869715472542563657980211015186, 2456766458611829222907737567821138, 8131203421875726862447708824758000364
Offset: 0

Views

Author

Paul D. Hanna, May 31 2018

Keywords

Comments

It is remarkable that this sequence should consist entirely of integers.
Note: 0 = [x^n] exp( n * Integral F(x)^2 dx ) / F(x) holds for n > 0 when F(x) = 1 + x*F(x)^3 is a g.f. of A001764.

Examples

			O.g.f.: A(x) = 1 + x + 33*x^2 + 3422*x^3 + 710395*x^4 + 245288190*x^5 + 127281447538*x^6 + 92967363233586*x^7 + 91202509214139831*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in exp(n^3*Integral A(x)^2 dx)/A(x) begins:
n=0: [1, -1, -32, -3357, -702560, -243654950, ...];
n=1: [1, 0, -63/2, -3367, -5633901/8, -2440775421/10, ...];
n=2: [1, 7, 0, -3325, -715316, -1235155194/5, ...];
n=3: [1, 26, 665/2, 0, -5720533/8, -5095053859/20, ...];
n=4: [1, 63, 2016, 41699, 0, -1290302622/5, ...];
n=5: [1, 124, 15561/2, 328643, 80013395/8, 0, ...];
n=6: [1, 215, 23296, 1697283, 93264388, 19574613422/5, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] exp(n^3*Integral A(x)^2 dx)/A(x), for n > 0.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 67*x^2 + 6910*x^3 + 1428723*x^4 + 492223022*x^5 + 255112067610*x^6 + 186210340326168*x^7 + 182601537143712727*x^8 + ...
exp( Integral A(x)^2 dx) = 1 + x + 5*x^2/2! + 415*x^3/3! + 167521*x^4/4! + 172296341*x^5/5! + 355443416701*x^6/6! + 1288266047868955*x^7/7! + 7518341623369166465*x^8/8! + ...
A'(x)/A(x) = 1 + 65*x + 10168*x^2 + 2825845*x^3 + 1222346736*x^4 + 762046826846*x^5 + 649809039848130*x^6 + 728835192043655757*x^7 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],m); for(i=1,n+1, m=#A; A=concat(A,0); A[m+1] = Vec( exp(m^3*intformal(Ser(A)^2)) / Ser(A) )[m+1] );A[n+1]}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ 3^(3*n - 1) * n^(2*n - 1/2) / (sqrt(2*Pi*(1-c)) * c^n * (3-c)^(2*n - 1) * exp(2*n)), where c = -LambertW(-3*exp(-3)) = -A226750. - Vaclav Kotesovec, Oct 19 2020

A304323 O.g.f. A(x) satisfies: [x^n] exp( n^3 * x ) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 1, 25, 2317, 466241, 162016980, 85975473871, 64545532370208, 65062315637060121, 84756897268784533255, 138581022247955235150982, 277878562828788369685779910, 670574499099019193091230751539, 1917288315895234006935990419270242, 6409780596355519454337664637246378856, 24774712941456386970945752104780461007848, 109632095120643795798521114315908854415860345
Offset: 0

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

It is conjectured that the coefficients of o.g.f. A(x) consist entirely of integers.
Equals row 3 of table A304320.
O.g.f. A(x) = 1/(1 - x*B(x)), where B(x) is the o.g.f. of A107675.
Logarithmic derivative of o.g.f. A(x), A'(x)/A(x), equals o.g.f. of A304312.
Conjecture: given o.g.f. A(x), the coefficient of x^n in A'(x)/A(x) is the number of connected n-state finite automata with 3 inputs (A006692).

Examples

			O.g.f.: A(x) = 1 + x + 25*x^2 + 2317*x^3 + 466241*x^4 + 162016980*x^5 + 85975473871*x^6 + 64545532370208*x^7 + 65062315637060121*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^3*x) / A(x) begins:
n=0: [1, -1, -48, -13608, -11065344, -19317285000, -61649646030720, ...];
n=1: [1, 0, -49, -13754, -11120067, -19372748284, -61765715993765, ...];
n=2: [1, 7, 0, -14440, -11517184, -19768841352, -62587640670464, ...];
n=3: [1, 26, 627, 0, -12292251, -20908064898, -64905483973113, ...];
n=4: [1, 63, 3920, 227032, 0, -22551552136, -69768485886848, ...];
n=5: [1, 124, 15327, 1874642, 213958781, 0, -75806801733845, ...];
n=6: [1, 215, 46176, 9893016, 2100211968, 416846973816, 0, ...];
n=7: [1, 342, 116915, 39937660, 13616254341, 4604681316698, 1458047845980391, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^3*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304313:
A'(x)/A(x) = 1 + 49*x + 6877*x^2 + 1854545*x^3 + 807478656*x^4 + 514798204147*x^5 + 451182323794896*x^6 + 519961864703259753*x^7 + ... + A304313(n)*x^n +...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A107675:
B(x) = 1 + 24*x + 2268*x^2 + 461056*x^3 + 160977375*x^4 + 85624508376*x^5 + 64363893844726*x^6 + ... + A107675(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^3 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

a(n) ~ sqrt(1-c) * 3^(3*n) * n^(2*n - 1/2) / (sqrt(2*Pi) * c^n * (3-c)^(2*n) * exp(2*n)), where c = -A226750 = -LambertW(-3*exp(-3)). - Vaclav Kotesovec, Aug 31 2020

A317346 O.g.f. A(x) satisfies: [x^n] exp( n^3*x - n^2*A(x) ) = 0 for n >= 1.

Original entry on oeis.org

1, 2, 72, 8096, 1839000, 695334816, 392764566208, 309340607492096, 323795915817507936, 434750954619876448000, 728547799352068864173632, 1490865523016798790557180928, 3659466509860384349989504297344, 10614823215131644149237135937187328, 35927108634064565449228268842108588800, 140351379904337650357154561973550135705600
Offset: 1

Views

Author

Paul D. Hanna, Jul 26 2018

Keywords

Comments

It is remarkable that this sequence should consist entirely of integers.

Examples

			O.g.f.: A(x) = x + 2*x^2 + 72*x^3 + 8096*x^4 + 1839000*x^5 + 695334816*x^6 + 392764566208*x^7 + 309340607492096*x^8 + ...
such that [x^n] exp( n^3*x - n^2*A(x) ) = 0  for n >= 1.
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp( n^3*x - n^2*A(x) ) begins:
n=1: [1, 0, -4, -432, -194256, -220662720, -500627544000, ...];
n=2: [1, 4, 0, -1856, -805376, -898258176, -2023715201024, ...];
n=3: [1, 18, 288, 0, -1989792, -2154563712, -4727980751616, ...];
n=4: [1, 48, 2240, 94464, 0, -4244861952, -9137589559296, ...];
n=5: [1, 100, 9900, 959200, 84852400, 0, -15901448888000, ...];
n=6: [1, 180, 32256, 5738688, 1003636224, 161358324480, 0, ...];
n=7: [1, 294, 86240, 25218144, 7335234144, 2103824749824, 557359956846336, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
RELATED SERIES.
exp(A(x)) = 1 + x + 5*x^2/2! + 445*x^3/3! + 196105*x^4/4! + 221673401*x^5/5! + 501981700621*x^6/6! + 1983064113021685*x^7/7!  + ... + A317345(n)*x^n/n! + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m^3*x +x*O(x^#A)) / Ser(A)^(m^2) )[m+1]/m^2 ); polcoeff( log(Ser(A)),n)}
    for(n=1,20,print1(a(n),", "))

Formula

a(n) ~ sqrt(1 - c) * 3^(3*n - 7/3) * n^(2*n - 5/2) / (sqrt(2*Pi) * exp(2*n) * c^(n - 1/3) * (3 - c)^(2*n - 2)), where c = -LambertW(-3*exp(-3)) = 0.1785606278779211065968086697... = -A226750. - Vaclav Kotesovec, Aug 07 2018

A296172 E.g.f. A(x) satisfies: [x^(n-1)] A(x)^(n^3) = [x^n] A(x)^(n^3) for n>=1.

Original entry on oeis.org

1, 1, -5, -197, -65111, -62390159, -125012786669, -447082993406405, -2583111044504384687, -22511408975342644804991, -281350305428215911326408789, -4850582201056517165575319399909, -111834955668396093904661955538037255, -3361788412998032560821833199260880942287, -128987969989211586699135087535153035663946301, -6203990036027464835833031041177436339788197962789
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2017

Keywords

Comments

Compare e.g.f. to: [x^(n-1)] exp(x)^n = [x^n] exp(x)^n for n>=1.

Examples

			E.g.f.: A(x) = 1 + x - 5*x^2/2! - 197*x^3/3! - 65111*x^4/4! - 62390159*x^5/5! - 125012786669*x^6/6! - 447082993406405*x^7/7! - 2583111044504384687*x^8/8! - 22511408975342644804991*x^9/9! - 281350305428215911326408789*x^10/10! - 4850582201056517165575319399909*x^11/11! - 111834955668396093904661955538037255*x^12/12! +...
To illustrate [x^(n-1)] A(x)^(n^3) = [x^n] A(x)^(n^3), form a table of coefficients of x^k in A(x)^(n^3) that begins as
n=1: [(1), (1), -5/2, -197/6, -65111/24, -62390159/120, -125012786669/720, ...];
n=2: [1, (8), (8), -1040/3, -71152/3, -64676744/15, -63817770776/45, ...];
n=3: [1, 27, (567/2), (567/2), -787941/8, -648507951/40, -405807483249/80, ...];
n=4: [1, 64, 1856, (88448/3), (88448/3), -689015872/15, -611019817664/45, ...];
n=5: [1, 125, 14875/2, 1649375/6, (156207625/24), (156207625/24), ...];
n=6: [1, 216, 22680, 1533168, 73812816, (12455715384/5), (12455715384/5), ...];
n=7: [1, 343, 115591/2, 38174185/6, 12294445009/24, 3808296195823/120, (1051338418817239/720), (1051338418817239/720), ...];
...
in which the diagonals indicated by parenthesis are equal.
Dividing the coefficients of x^(n-1)/(n-1)! in A(x)^(n^3) by n^3, we obtain the following sequence:
[1, 1, 21, 2764, 1249661, 1383968376, 3065126585473, 11913154589356672, 74286423963211939641, 696469981042645688972800, ...].
LOGARITHMIC PROPERTY.
Amazingly, the logarithm of the e.g.f. A(x) is an integer series:
log(A(x)) = x - 3*x^2 - 30*x^3 - 2686*x^4 - 517311*x^5 - 173118807*x^6 - 88535206152*x^7 - 63977172334344*x^8 - 61971659588102940*x^9 - 77470793599569049440*x^10 - 121439997599825393413344*x^11 - 233353875172602479932391040*x^12 - 539638027429765922735002220880*x^13 - 1479049138515818646669055218090480*x^14 - 4742815067612592169849894663392228480*x^15 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n+1, A=concat(A,0); V=Vec(Ser(A)^((#A-1)^3)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^3 ); n!*A[n+1]}
    for(n=0,20,print1(a(n),", "))

Formula

The logarithm of the e.g.f. A(x) is an integer series:
log(A(x)) = Sum{n>=1} A296173(n) * x^n.
E.g.f. A(x) satisfies:
_ 1/n! * d^n/dx^n A(x)^(n^3) = 1/(n-1)! * d^(n-1)/dx^(n-1) A(x)^(n^3) for n>=1, when evaluated at x = 0.
a(n) ~ -sqrt(1-c) * 3^(3*n - 3) * n^(3*n - 3) / (c^n * (3-c)^(2*n - 3) * exp(3*n)), where c = -LambertW(-3*exp(-3)) = -A226750. - Vaclav Kotesovec, Oct 13 2020

A296173 G.f. equals the logarithm of the e.g.f. of A296172.

Original entry on oeis.org

1, -3, -30, -2686, -517311, -173118807, -88535206152, -63977172334344, -61971659588102940, -77470793599569049440, -121439997599825393413344, -233353875172602479932391040, -539638027429765922735002220880, -1479049138515818646669055218090480, -4742815067612592169849894663392228480, -17597031102801426396121130730318359114880, -74817150772352720408567833273371047298417408
Offset: 1

Views

Author

Paul D. Hanna, Dec 07 2017

Keywords

Comments

E.g.f. G(x) of A296172 satisfies: [x^(n-1)] G(x)^(n^3) = [x^n] G(x)^(n^3) for n>=1.

Examples

			G.f. A(x) = x - 3*x^2 - 30*x^3 - 2686*x^4 - 517311*x^5 - 173118807*x^6 - 88535206152*x^7 - 63977172334344*x^8 - 61971659588102940*x^9 - 77470793599569049440*x^10 - 121439997599825393413344*x^11 - 233353875172602479932391040*x^12 - 539638027429765922735002220880*x^13 - 1479049138515818646669055218090480*x^14 - 4742815067612592169849894663392228480*x^15 +...
such that
G(x) = exp(A(x)) = 1 + x - 5*x^2/2! - 197*x^3/3! - 65111*x^4/4! - 62390159*x^5/5! - 125012786669*x^6/6! - 447082993406405*x^7/7! - 2583111044504384687*x^8/8! - 22511408975342644804991*x^9/9! - 281350305428215911326408789*x^10/10! - 4850582201056517165575319399909*x^11/11! - 111834955668396093904661955538037255*x^12/12! +...
satisfies [x^(n-1)] G(x)^(n^3) = [x^n] G(x)^(n^3) for n>=1.
Series_Reversion(A(x)) = x + 3*x^2 + 48*x^3 + 3271*x^4 + 575163*x^5 + 185377116*x^6 + 93039467356*x^7 + 66505075585875*x^8 + 63970743282062646*x^9 + 79580632411431634441*x^10 + 124299284968805234137968*x^11 + 238188439678208173206500760*x^12 +...+ A295813(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n+1, A=concat(A,0); V=Vec(Ser(A)^((#A-1)^3)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^3 ); polcoeff(log(Ser(A)),n)}
    for(n=1,30,print1(a(n),", "))

Formula

a(n) ~ -sqrt(1-c) * 3^(3*n - 3) * n^(2*n - 7/2) / (sqrt(2*Pi) * c^n * (3-c)^(2*n - 3) * exp(2*n)), where c = -LambertW(-3*exp(-3)) = -A226750. - Vaclav Kotesovec, Oct 13 2020

A305145 O.g.f. A(x) satisfies: 0 = [x^n] exp( n^3 * Integral 1/A(x) dx ) / A(x), for n > 0.

Original entry on oeis.org

1, 1, 21, 1886, 381735, 134584434, 72514796422, 55192152857400, 56287911330435339, 74043167807482274450, 122040226074154110294114, 246341047594913378800486668, 597752265070243363135031803950, 1716967839431601765698468898047292, 5762431350664488199395983555754160140, 22346478647255335081326815815314403748524
Offset: 0

Views

Author

Paul D. Hanna, May 31 2018

Keywords

Comments

Note: 0 = [x^n] exp( n * Integral 1/F(x) dx ) / F(x) holds for n > 0 when F(x) = 1 + x.
It is remarkable that this sequence should consist entirely of integers.

Examples

			O.g.f.: A(x) = 1 + x + 21*x^2 + 1886*x^3 + 381735*x^4 + 134584434*x^5 + 72514796422*x^6 + 55192152857400*x^7 + 56287911330435339*x^8 + 74043167807482274450*x^9 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in exp(n^3*Integral 1/A(x) dx)/A(x) begins:
n=0: [1, -1, -20, -1845, -377584, -133748650, -72227419704, -55040493806445, ...];
n=1: [1, 0, -21, -1872, -379890, -134201604, -72383437035, -55123034324112, ...];
n=2: [1, 7, 0, -2033, -396970, -137452068, -73490534208, -55705843833995, ...];
n=3: [1, 26, 304, 0, -437155, -147006370, -76635381186, -57333497856168, ...];
n=4: [1, 63, 1932, 36075, 0, -163035066, -83375170872, -60709861617885, ...];
n=5: [1, 124, 7605, 304780, 8444291, 0, -92858506104, -66905102463320, ...];
n=6: [1, 215, 22984, 1625463, 84879650, 3287781224, 0, -74725745263095, ...];
n=7: [1, 342, 58290, 6597132, 556856100, 37129859844, 1920530286186, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] exp(n^3 * Integral 1/A(x) dx)/A(x), for n > 0.
RELATED SERIES.
1/A(x) = 1 - x - 20*x^2 - 1845*x^3 - 377584*x^4 - 133748650*x^5 - 72227419704*x^6 - 55040493806445*x^7 - 56174066916766400*x^8 - 73928074251625193826*x^9 + ...
exp( Integral 1/A(x) dx) = 1 + x - 7*x^3 - 468*x^4 - 75978*x^5 - 22366934*x^6 - 10340491005*x^7 - 6890379290514*x^8 - 6248442860989378*x^9 - 7399048902607246248*x^10 + ..., which is an integer series.
A'(x)/A(x) = 1 + 41*x + 5596*x^2 + 1518597*x^3 + 670826996*x^4 + 434225271374*x^5 + 385813724342292*x^6 + 449847594913097949*x^7 + 665870324595294969196*x^8 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m^3*intformal(1/Ser(A))) / Ser(A) )[m+1] ); A[n+1]}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ sqrt(1-c) * 3^(3*n - 1) * n^(2*n - 1/2) / (sqrt(2*Pi) * c^n * (3-c)^(2*n - 1) * exp(2*n)), where c = -LambertW(-3*exp(-3)) = -A226750. - Vaclav Kotesovec, Oct 19 2020

A317347 O.g.f. A(x) satisfies: [x^n] exp( n^3*x - n*A(x) ) = 0 for n >= 1.

Original entry on oeis.org

1, 9, 552, 85842, 24653700, 11219022936, 7393496092416, 6649411839351120, 7822998961379912592, 11662362974001268456560, 21487905123054927319268352, 47958258768575173308988367040, 127523196462392124262710980808384, 398397752352904475778061859746030080, 1445051361690004153927005867189533921280
Offset: 1

Views

Author

Paul D. Hanna, Jul 29 2018

Keywords

Comments

It is remarkable that this sequence should consist entirely of integers.

Examples

			O.g.f.: A(x) = x + 9*x^2 + 552*x^3 + 85842*x^4 + 24653700*x^5 + 11219022936*x^6 + 7393496092416*x^7 + 6649411839351120*x^8 + ...
such that [x^n] exp( n^3*x - n*A(x) ) = 0  for n >= 1.
ILLUSTRATION OF DEFINITION.
The table of coefficients in  begins:
n=1: [1, 0, -18, -3312, -2059236, -2957847840, -8077030651800, ...];
n=2: [1, 6, 0, -7056, -4281984, -6040453824, -16367904244224, ...];
n=3: [1, 24, 522, 0, -6980580, -9667325376, -25560523291464, ...];
n=4: [1, 60, 3528, 189792, 0, -14146669440, -37025599219200, ...];
n=5: [1, 120, 14310, 1679040, 181358460, 0, -51097553724600, ...];
n=6: [1, 210, 43992, 9173088, 1887214464, 358972896960, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
RELATED SERIES.
exp(A(x)) = 1 + x + 19*x^2/2! + 3367*x^3/3! + 2074537*x^4/4! + 2969379361*x^5/5! + 8096147776171*x^6/6! + 37321188279552199*x^7/7! + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m^3*x +x*O(x^#A)) / Ser(A)^m )[m+1]/m ); polcoeff( log(Ser(A)), n)}
    for(n=1, 20, print1(a(n), ", "))

Formula

a(n) ~ sqrt(1-c) * 3^(3*n-1) * n^(2*n - 3/2) / (sqrt(2*Pi) * c^n * (3-c)^(2*n-1) * exp(2*n)), where c = -LambertW(-3*exp(-3)) = 0.1785606278779211065968086697... = -A226750. - Vaclav Kotesovec, Aug 06 2018

A221214 O.g.f.: Sum_{n>=0} (3*n+1)^(3*n+1) * exp(-(3*n+1)^3*x) * x^n / n!.

Original entry on oeis.org

1, 255, 395388, 1525953330, 10977340509135, 126827739333023274, 2148335345336441463090, 50163717301669569182864400, 1544377393328765493716910877185, 60615459491155396034172113103266025, 2954227738557038665136475801709196246304
Offset: 0

Views

Author

Paul D. Hanna, Feb 27 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + 255*x + 395388*x^2 + 1525953330*x^3 + 10977340509135*x^4 +...
where A(x) = exp(-x) + 4^4*x*exp(-4^3*x) + 7^7*exp(-7^3*x)*x^2/2! + 10^10*exp(-10^3*x)*x^3/3! + 13^13*exp(-13^3*x)*x^4/4! + 16^16*exp(-16^3*x)*x^5/5! +... is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[1/n!*Sum[(-1)^(n-k)*Binomial[n,k]*(3*k+1)^(3*n+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 13 2014 *)
    Table[Sum[Binomial[3*n+1,n+k]*3^(n+k)*StirlingS2[n+k,n],{k,0,2*n+1}],{n,0,20}] (* Vaclav Kotesovec, May 13 2014 *)
  • PARI
    {a(n)=polcoeff(sum(k=0, n, (3*k+1)^(3*k+1)*exp(-(3*k+1)^3*x +x*O(x^n))*x^k/k!), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, (3*k+1)^(3*k+1)*x^k/(1+(3*k+1)^3*x +x*O(x^n))^(k+1)), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=1/n!*sum(k=0, n, (-1)^(n-k)*binomial(n, k)*(3*k+1)^(3*n+1))}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = 1/n! * [x^n] Sum_{k>=0} (3*k+1)^(3*k+1) * x^k / (1 + (3*k+1)^3*x)^(k+1).
a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * (3*k+1)^(3*n+1).
a(n) ~ n^(2*n+1/2) * 3^(6*n+7/3) / (sqrt(2*Pi*(1-r)) * exp(2*n) * r^(n+1/3) * (3-r)^(2*n+1)), where r = -LambertW(-3*exp(-3)) = 0.1785606278779211... (see A226750 = -r) . - Vaclav Kotesovec, May 13 2014
Showing 1-10 of 15 results. Next