A304322
O.g.f. A(x) satisfies: [x^n] exp( n^2 * x ) / A(x) = 0 for n>0.
Original entry on oeis.org
1, 1, 5, 54, 935, 22417, 685592, 25431764, 1106630687, 55174867339, 3097872254493, 193283918695494, 13260815963831108, 991928912663646012, 80325879518096889760, 7000127337189146831092, 653156403671376068448047, 64963788042207845593775999, 6861040250464949653809027311, 766815367797924824316405828466, 90417908118862070187113849296815
Offset: 0
O.g.f.: A(x) = 1 + x + 5*x^2 + 54*x^3 + 935*x^4 + 22417*x^5 + 685592*x^6 + 25431764*x^7 + 1106630687*x^8 + 55174867339*x^9 + 3097872254493*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^2*x) / A(x) begins:
n=0: [1, -1, -8, -270, -19584, -2427000, -455544000, -120136161600, ...];
n=1: [1, 0, -9, -296, -20715, -2527704, -470405285, -123376631664, ...];
n=2: [1, 3, 0, -350, -24672, -2867256, -518870528, -133753337280, ...];
n=3: [1, 8, 55, 0, -29547, -3559056, -614943333, -153534305160, ...];
n=4: [1, 15, 216, 2674, 0, -4291704, -783235520, -187656684864, ...];
n=5: [1, 24, 567, 12880, 251541, 0, -948897125, -243358236600, ...];
n=6: [1, 35, 1216, 41634, 1372320, 38884296, 0, -295870371264, ...];
n=7: [1, 48, 2295, 109000, 5106453, 230531544, 8944955227, 0, ...];
n=8: [1, 63, 3960, 248050, 15443328, 949131144, 56257429312, 2865412167360, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^2*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304312:
A'(x)/A(x) = 1 + 9*x + 148*x^2 + 3493*x^3 + 106431*x^4 + 3950832*x^5 + 172325014*x^6 + 8617033285*x^7 + 485267003023*x^8 + 30363691715629*x^9 + ... + A304312(n)*x^n +...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A107668:
B(x) = 1 + 4*x + 45*x^2 + 816*x^3 + 20225*x^4 + 632700*x^5 + 23836540*x^6 + 1048592640*x^7 + 52696514169*x^8 + ... + A107668(n)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^2 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
for(n=0,25, print1( a(n),", "))
A304320
Table of coefficients in row functions R(n,x) such that [x^k] exp( k^n * x ) / R(n,x) = 0 for k>=1 and n>=1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 25, 54, 1, 1, 1, 113, 2317, 935, 1, 1, 1, 481, 76446, 466241, 22417, 1, 1, 1, 1985, 2246281, 153143499, 162016980, 685592, 1, 1, 1, 8065, 62861994, 43087884081, 673638499100, 85975473871, 25431764, 1, 1, 1, 32513, 1723380877, 11442690973075, 2331601789103231, 5510097691767062, 64545532370208, 1106630687, 1, 1, 1, 130561, 46836819846, 2972352315820441, 7570836550478960487, 287133439746933073357, 75312181798660695788, 65062315637060121, 55174867339, 1
Offset: 1
This table begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 1, 5, 54, 935, 22417, 685592, 25431764, 1106630687, 55174867339, ...;
1, 1, 25, 2317, 466241, 162016980, 85975473871, 64545532370208, ...;
1, 1, 113, 76446, 153143499, 673638499100, 5510097691767062, ...;
1, 1, 481, 2246281, 43087884081, 2331601789103231, 287133439746933073357, ...;
1, 1, 1985, 62861994, 11442690973075, 7570836550478960487, ...;
1, 1, 8065, 1723380877, 2972352315820441, 24013530904194819396970, ...;
1, 1, 32513, 46836819846, 765428206086770699, 75487364859452767380638650, ...;
1, 1, 130561, 1268169652561, 196425341268811084961, 236460748444613412476233431261, ...; ...
Let R(n,x) denote the o.g.f. of row n of this table, then the coefficient of x^k in exp(k^n*x)/R(n,x) = 0 for k>=1 and n>=1.
-
{T(n,k) = my(A=[1],m); for(i=1, k, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^n +x*O(x^m)) / Ser(A) )[m] ); A[k+1]}
/* Print table: */
for(n=1,8, for(k=0,8, print1( T(n,k),", "));print(""))
/* Print as a flattened table: */
for(n=0,10, for(k=0,n, print1( T(n-k+1,k),", "));)
A304324
O.g.f. A(x) satisfies: [x^n] exp( n^4 * x ) / A(x) = 0 for n>0.
Original entry on oeis.org
1, 1, 113, 76446, 153143499, 673638499100, 5510097691767062, 75312181798660695788, 1595682359653020033714019, 49564410138113345565513815041, 2161639124039437373346491749452440, 127889301139607880711208251726358504898, 9979766671875039854419652569806336108694074
Offset: 0
O.g.f.: A(x) = 1 + x + 113*x^2 + 76446*x^3 + 153143499*x^4 + 673638499100*x^5 + 5510097691767062*x^6 + 75312181798660695788*x^7 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^4*x) / A(x) begins:
n=0: [1, -1, -224, -457326, -3671476224, -80797824300000, ...];
n=1: [1, 0, -225, -458000, -3673306875, -80816186256624, ...];
n=2: [1, 15, 0, -464750, -3701040000, -81092721606624, ...];
n=3: [1, 80, 6175, 0, -3787546875, -82312696206624, ...];
n=4: [1, 255, 64800, 15951250, 0, -84756571206624, ...];
n=5: [1, 624, 389151, 242091424, 146271536901, 0, ...];
n=6: [1, 1295, 1676800, 2170415250, 2804103120000, 3524906587193376, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^4*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304314:
A'(x)/A(x) = 1 + 225*x + 229000*x^2 + 612243125*x^3 + 3367384031526*x^4 + 33056423981177346*x^5 + 527146092112494861420*x^6 + ... + A304314(n)*x^n + ...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A304394:
B(x) = 1 + 112*x + 76221*x^2 + 152978176*x^3 + 673315202500*x^4 + 5508710472669120*x^5 + 75300988091046198131*x^6 + ... + A304394(n)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^4 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
for(n=0,25, print1( a(n),", "))
A304313
Logarithmic derivative of F(x) that satisfies: [x^n] exp( n^3 * x ) / F(x) = 0 for n>0.
Original entry on oeis.org
1, 49, 6877, 1854545, 807478656, 514798204147, 451182323794896, 519961864703259753, 762210147961330421167, 1384945048774500147047194, 3055115321627096660341307614, 8043516699726480852467167758419, 24915939138210507189761922944830006, 89709850983809128394441772076036629240, 371523831948166269091257380175120352465872
Offset: 0
O.g.f.: L(x) = 1 + 49*x + 6877*x^2 + 1854545*x^3 + 807478656*x^4 + 514798204147*x^5 + 451182323794896*x^6 + 519961864703259753*x^7 + ...
such that L(x) = F'(x)/F(x) where F(x) is the o.g.f. of A304323 :
F(x) = 1 + x + 25*x^2 + 2317*x^3 + 466241*x^4 + 162016980*x^5 + 85975473871*x^6 + 64545532370208*x^7 + 65062315637060121*x^8 + ... + A304323(n)*x^n + ...
which satisfies [x^n] exp( n^3 * x ) / F(x) = 0 for n>0.
-
m = 25;
F = 1 + Sum[c[k] x^k, {k, m}];
s[n_] := Solve[SeriesCoefficient[Exp[n^3*x]/F, {x, 0, n}] == 0][[1]];
Do[F = F /. s[n], {n, m}];
CoefficientList[D[F, x]/F + O[x]^m, x] (* Jean-François Alcover, May 21 2018 *)
-
{a(n) = my(A=[1],L); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^3 +x^2*O(x^m)) / Ser(A) )[m] ); L = Vec(Ser(A)'/Ser(A)); L[n+1]}
for(n=0,25, print1( a(n),", "))
A304325
O.g.f. A(x) satisfies: [x^n] exp( n^5 * x ) / A(x) = 0 for n>0.
Original entry on oeis.org
1, 1, 481, 2246281, 43087884081, 2331601789103231, 287133439746933073357, 69929721774643572422651223, 30496192503451926066104677123329, 22113985380962062942048847693898939310, 25177466100486219354624677349405490885006591, 42994825404638061265611776726882581676486680632128
Offset: 0
O.g.f.: A(x) = 1 + x + 481*x^2 + 2246281*x^3 + 43087884081*x^4 + 2331601789103231*x^5 + 287133439746933073357*x^6 + 69929721774643572422651223*x^7 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^5*x) / A(x) begins:
n=0: [1, -1, -960, -13471920, -1033995878400, -279781615181250000, ...];
n=1: [1, 0, -961, -13474802, -1034049771843, -279786785295370804, ...];
n=2: [1, 31, 0, -13534384, -1035725264896, -279947192760516048, ...];
n=3: [1, 242, 57603, 0, -1044001318107, -281045183102366562, ...];
n=4: [1, 1023, 1045568, 1054175056, 0, -284106842971323856, ...];
n=5: [1, 3124, 9758415, 30465809330, 93986716449725, 0, ...];
n=6: [1, 7775, 60449664, 469967719248, 3652476388472832, 28079364132086235696, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^5*x ) / A(x) = 0 for n >= 0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304315:
A'(x)/A(x) = 1 + 961*x + 6737401*x^2 + 172342090401*x^3 + 11657788116175751*x^4 + 1722786509653595220757*x^5 + 489506033977061086758261063*x^6 + ... + A304315(n)*x^n +...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A304395:
B(x) = 1 + 480*x + 2245320*x^2 + 43083161600*x^3 + 2331513459843750*x^4 + 287128730182879382976*x^5 + ... + A304395(n)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^5 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
for(n=0,25, print1( a(n),", "))
Original entry on oeis.org
1, 24, 2268, 461056, 160977375, 85624508376, 64363893844726, 64928246784463872, 84623205378726331245, 138408056280920732755000, 277597038523589348539241112, 670011760601512512626484887040
Offset: 0
O.g.f.: A(x) = 1 + 24*x + 2268*x^2 + 461056*x^3 + 160977375*x^4 + 85624508376*x^5 + 64363893844726*x^6 + 64928246784463872*x^7 + ...
-
{a(n)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^3)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));(P^-1*D^2*P)[n+1,1]}
for(n=0,20, print1(a(n),", "))
-
/* From formula: [x^n] exp( n^3*x ) * (1 - x*A(x)) = 0 */
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m^3 +x^2*O(x^m)) * (1 - x*Ser(A)) )[m+1] ); A[n+1]}
for(n=0, 25, print1( a(n), ", ")) \\ Paul D. Hanna, May 12 2018
-
/* From Recurrence: */
{a(n) = if(n==0,1, (n+1)^(3*n+3)/(n+1)! - sum(k=1,n, (n+1)^(3*k)/k! * a(n-k) ))}
for(n=0,25, print1( a(n),", ")) \\ Paul D. Hanna, May 12 2018
Showing 1-6 of 6 results.
Comments