A304322
O.g.f. A(x) satisfies: [x^n] exp( n^2 * x ) / A(x) = 0 for n>0.
Original entry on oeis.org
1, 1, 5, 54, 935, 22417, 685592, 25431764, 1106630687, 55174867339, 3097872254493, 193283918695494, 13260815963831108, 991928912663646012, 80325879518096889760, 7000127337189146831092, 653156403671376068448047, 64963788042207845593775999, 6861040250464949653809027311, 766815367797924824316405828466, 90417908118862070187113849296815
Offset: 0
O.g.f.: A(x) = 1 + x + 5*x^2 + 54*x^3 + 935*x^4 + 22417*x^5 + 685592*x^6 + 25431764*x^7 + 1106630687*x^8 + 55174867339*x^9 + 3097872254493*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^2*x) / A(x) begins:
n=0: [1, -1, -8, -270, -19584, -2427000, -455544000, -120136161600, ...];
n=1: [1, 0, -9, -296, -20715, -2527704, -470405285, -123376631664, ...];
n=2: [1, 3, 0, -350, -24672, -2867256, -518870528, -133753337280, ...];
n=3: [1, 8, 55, 0, -29547, -3559056, -614943333, -153534305160, ...];
n=4: [1, 15, 216, 2674, 0, -4291704, -783235520, -187656684864, ...];
n=5: [1, 24, 567, 12880, 251541, 0, -948897125, -243358236600, ...];
n=6: [1, 35, 1216, 41634, 1372320, 38884296, 0, -295870371264, ...];
n=7: [1, 48, 2295, 109000, 5106453, 230531544, 8944955227, 0, ...];
n=8: [1, 63, 3960, 248050, 15443328, 949131144, 56257429312, 2865412167360, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^2*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304312:
A'(x)/A(x) = 1 + 9*x + 148*x^2 + 3493*x^3 + 106431*x^4 + 3950832*x^5 + 172325014*x^6 + 8617033285*x^7 + 485267003023*x^8 + 30363691715629*x^9 + ... + A304312(n)*x^n +...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A107668:
B(x) = 1 + 4*x + 45*x^2 + 816*x^3 + 20225*x^4 + 632700*x^5 + 23836540*x^6 + 1048592640*x^7 + 52696514169*x^8 + ... + A107668(n)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^2 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
for(n=0,25, print1( a(n),", "))
A304320
Table of coefficients in row functions R(n,x) such that [x^k] exp( k^n * x ) / R(n,x) = 0 for k>=1 and n>=1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 25, 54, 1, 1, 1, 113, 2317, 935, 1, 1, 1, 481, 76446, 466241, 22417, 1, 1, 1, 1985, 2246281, 153143499, 162016980, 685592, 1, 1, 1, 8065, 62861994, 43087884081, 673638499100, 85975473871, 25431764, 1, 1, 1, 32513, 1723380877, 11442690973075, 2331601789103231, 5510097691767062, 64545532370208, 1106630687, 1, 1, 1, 130561, 46836819846, 2972352315820441, 7570836550478960487, 287133439746933073357, 75312181798660695788, 65062315637060121, 55174867339, 1
Offset: 1
This table begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 1, 5, 54, 935, 22417, 685592, 25431764, 1106630687, 55174867339, ...;
1, 1, 25, 2317, 466241, 162016980, 85975473871, 64545532370208, ...;
1, 1, 113, 76446, 153143499, 673638499100, 5510097691767062, ...;
1, 1, 481, 2246281, 43087884081, 2331601789103231, 287133439746933073357, ...;
1, 1, 1985, 62861994, 11442690973075, 7570836550478960487, ...;
1, 1, 8065, 1723380877, 2972352315820441, 24013530904194819396970, ...;
1, 1, 32513, 46836819846, 765428206086770699, 75487364859452767380638650, ...;
1, 1, 130561, 1268169652561, 196425341268811084961, 236460748444613412476233431261, ...; ...
Let R(n,x) denote the o.g.f. of row n of this table, then the coefficient of x^k in exp(k^n*x)/R(n,x) = 0 for k>=1 and n>=1.
-
{T(n,k) = my(A=[1],m); for(i=1, k, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^n +x*O(x^m)) / Ser(A) )[m] ); A[k+1]}
/* Print table: */
for(n=1,8, for(k=0,8, print1( T(n,k),", "));print(""))
/* Print as a flattened table: */
for(n=0,10, for(k=0,n, print1( T(n-k+1,k),", "));)
A304324
O.g.f. A(x) satisfies: [x^n] exp( n^4 * x ) / A(x) = 0 for n>0.
Original entry on oeis.org
1, 1, 113, 76446, 153143499, 673638499100, 5510097691767062, 75312181798660695788, 1595682359653020033714019, 49564410138113345565513815041, 2161639124039437373346491749452440, 127889301139607880711208251726358504898, 9979766671875039854419652569806336108694074
Offset: 0
O.g.f.: A(x) = 1 + x + 113*x^2 + 76446*x^3 + 153143499*x^4 + 673638499100*x^5 + 5510097691767062*x^6 + 75312181798660695788*x^7 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^4*x) / A(x) begins:
n=0: [1, -1, -224, -457326, -3671476224, -80797824300000, ...];
n=1: [1, 0, -225, -458000, -3673306875, -80816186256624, ...];
n=2: [1, 15, 0, -464750, -3701040000, -81092721606624, ...];
n=3: [1, 80, 6175, 0, -3787546875, -82312696206624, ...];
n=4: [1, 255, 64800, 15951250, 0, -84756571206624, ...];
n=5: [1, 624, 389151, 242091424, 146271536901, 0, ...];
n=6: [1, 1295, 1676800, 2170415250, 2804103120000, 3524906587193376, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^4*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304314:
A'(x)/A(x) = 1 + 225*x + 229000*x^2 + 612243125*x^3 + 3367384031526*x^4 + 33056423981177346*x^5 + 527146092112494861420*x^6 + ... + A304314(n)*x^n + ...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A304394:
B(x) = 1 + 112*x + 76221*x^2 + 152978176*x^3 + 673315202500*x^4 + 5508710472669120*x^5 + 75300988091046198131*x^6 + ... + A304394(n)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^4 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
for(n=0,25, print1( a(n),", "))
A304323
O.g.f. A(x) satisfies: [x^n] exp( n^3 * x ) / A(x) = 0 for n>0.
Original entry on oeis.org
1, 1, 25, 2317, 466241, 162016980, 85975473871, 64545532370208, 65062315637060121, 84756897268784533255, 138581022247955235150982, 277878562828788369685779910, 670574499099019193091230751539, 1917288315895234006935990419270242, 6409780596355519454337664637246378856, 24774712941456386970945752104780461007848, 109632095120643795798521114315908854415860345
Offset: 0
O.g.f.: A(x) = 1 + x + 25*x^2 + 2317*x^3 + 466241*x^4 + 162016980*x^5 + 85975473871*x^6 + 64545532370208*x^7 + 65062315637060121*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^3*x) / A(x) begins:
n=0: [1, -1, -48, -13608, -11065344, -19317285000, -61649646030720, ...];
n=1: [1, 0, -49, -13754, -11120067, -19372748284, -61765715993765, ...];
n=2: [1, 7, 0, -14440, -11517184, -19768841352, -62587640670464, ...];
n=3: [1, 26, 627, 0, -12292251, -20908064898, -64905483973113, ...];
n=4: [1, 63, 3920, 227032, 0, -22551552136, -69768485886848, ...];
n=5: [1, 124, 15327, 1874642, 213958781, 0, -75806801733845, ...];
n=6: [1, 215, 46176, 9893016, 2100211968, 416846973816, 0, ...];
n=7: [1, 342, 116915, 39937660, 13616254341, 4604681316698, 1458047845980391, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^3*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304313:
A'(x)/A(x) = 1 + 49*x + 6877*x^2 + 1854545*x^3 + 807478656*x^4 + 514798204147*x^5 + 451182323794896*x^6 + 519961864703259753*x^7 + ... + A304313(n)*x^n +...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A107675:
B(x) = 1 + 24*x + 2268*x^2 + 461056*x^3 + 160977375*x^4 + 85624508376*x^5 + 64363893844726*x^6 + ... + A107675(n)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^3 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
for(n=0,25, print1( a(n),", "))
A304315
Logarithmic derivative of F(x) that satisfies: [x^n] exp( n^5 * x ) / F(x) = 0 for n>0.
Original entry on oeis.org
1, 961, 6737401, 172342090401, 11657788116175751, 1722786509653595220757, 489506033977061086758261063, 243968979437942649897623460813009, 199025593654123221838381793032781035510, 251774439716905627952289102887999425054599511, 472942802381336010263584088374665504251010554412128, 1273071332950625956697135571575613091625334028239417955701
Offset: 0
O.g.f.: L(x) = 1 + 961*x + 6737401*x^2 + 172342090401*x^3 + 11657788116175751*x^4 + 1722786509653595220757*x^5 + 489506033977061086758261063*x^6 + ...
such that L(x) = F'(x)/F(x) where F(x) is the o.g.f. of A304325 :
F(x) = 1 + x + 481*x^2 + 2246281*x^3 + 43087884081*x^4 + 2331601789103231*x^5 + 287133439746933073357*x^6 + 69929721774643572422651223*x^7 + ... + A304325(n)*x^n + ...
which satisfies [x^n] exp( n^5 * x ) / F(x) = 0 for n>0.
-
m = 25;
F = 1 + Sum[c[k] x^k, {k, m}];
s[n_] := Solve[SeriesCoefficient[Exp[n^5*x]/F, {x, 0, n}] == 0][[1]];
Do[F = F /. s[n], {n, m}];
CoefficientList[D[F, x]/F + O[x]^m, x] (* Jean-François Alcover, May 21 2018 *)
-
{a(n) = my(A=[1],L); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^4 +x^2*O(x^m)) / Ser(A) )[m] ); L = Vec(Ser(A)'/Ser(A)); L[n+1]}
for(n=0,25, print1( a(n),", "))
A304395
O.g.f. A(x) satisfies: [x^n] exp( n^5 * x ) * (1 - x*A(x)) = 0 for n > 0.
Original entry on oeis.org
1, 480, 2245320, 43083161600, 2331513459843750, 287128730182879382976, 69929145078323834449039740, 30496052356323314014140611297280, 22113924320024426907851753695581691875, 25177421842925471123473548283955430812500000, 42994775028354266041451477298870703788676694998956, 106089234738948935762581435147478647028049918327743508480
Offset: 0
O.g.f.: A(x) = 1 + 480*x + 2245320*x^2 + 43083161600*x^3 + 2331513459843750*x^4 + 287128730182879382976*x^5 + 69929145078323834449039740*x^6 + ...
-
/* From formula: [x^n] exp( n^5*x ) * (1 - x*A(x)) = 0 */
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m^5 +x^2*O(x^m)) * (1 - x*Ser(A)) )[m+1] ); A[n+1]}
for(n=0, 20, print1( a(n), ", "))
Showing 1-6 of 6 results.
Comments