cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A337551 Diagonal of A304320.

Original entry on oeis.org

1, 1, 5, 2317, 153143499, 2331601789103231, 13956629370284243750857868, 50423205212193924706520234988903231406, 154976268837151170420647979803561273009994277188269267, 540838714291102105296873678266047207577891369813629960678503735540658879
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2020

Keywords

Crossrefs

Cf. A304320.

Programs

  • PARI
    {T(n, k) = my(A=[1], m); for(i=1, k, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^n +x*O(x^m)) / Ser(A) )[m] ); A[k+1]}
    for(n=0, 10, print1(T(n, n), ", ")) \\ after Paul D. Hanna

Formula

a(n) ~ n^(n^2) / n!.
a(n) ~ exp(n) * n^(n^2 - n - 1/2) / sqrt(2*Pi).

A304321 Table of coefficients in row functions F'(n,x)/F(n,x) such that [x^k] exp( k^n * x ) / F(n,x) = 0 for k>=1 and n>=1.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 49, 148, 1, 1, 225, 6877, 3493, 1, 1, 961, 229000, 1854545, 106431, 1, 1, 3969, 6737401, 612243125, 807478656, 3950832, 1, 1, 16129, 188580028, 172342090401, 3367384031526, 514798204147, 172325014, 1, 1, 65025, 5170118437, 45770504571813, 11657788116175751, 33056423981177346, 451182323794896, 8617033285, 1
Offset: 1

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

Conjecture: T(n,k) in row n and column k gives the number of connected k-state finite automata with n inputs, for k>=0, for n>=1. For example, row 2 agrees with A006691, the number of connected n-state finite automata with 2 inputs; also, row 3 agrees with A006692, the number of connected n-state finite automata with 3 inputs.

Examples

			This table begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 9, 148, 3493, 106431, 3950832, 172325014, 8617033285, 485267003023, ...;
1, 49, 6877, 1854545, 807478656, 514798204147, 451182323794896, ...;
1, 225, 229000, 612243125, 3367384031526, 33056423981177346, ...;
1, 961, 6737401, 172342090401, 11657788116175751, 1722786509653595220757, ...;
1, 3969, 188580028, 45770504571813, 37854124915368647781, ...;
1, 16129, 5170118437, 11889402239702065, 120067639589726126102806, ...;
1, 65025, 140510362000, 3061712634885743125, 377436820462509018320487276, ...;
1, 261121, 3804508566001, 785701359968473902401, 1182303741240112494973150131501, ...; ...
Let F'(n,x)/F(n,x) denote the o.g.f. of row n of this table, then the coefficient of x^k in exp(k^n*x)/F(n,x) = 0 for k>=1 and n>=1.
		

Crossrefs

Cf. A304320, A304312 (row 2), A304313 (row 3), A304314 (row 4), A304315 (row 5).

Programs

  • Mathematica
    m = 10(*rows*);
    row[nn_] := Module[{F, s}, F = 1 + Sum[c[k] x^k, {k, m}]; s[n_] := Solve[ SeriesCoefficient[Exp[n^nn*x]/F, {x, 0, n}] == 0][[1]]; Do[F = F /. s[n], {n, m}]; CoefficientList[D[F, x]/F + O[x]^m, x]];
    T = Array[row, m];
    Table[T[[n-k+1, k]], {n, 1, m}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 27 2019 *)
  • PARI
    {T(n,k) = my(A=[1],m); for(i=0, k, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^n +x^2*O(x^m)) / Ser(A) )[m] ); L = Vec(Ser(A)'/Ser(A)); L[k+1]}
    /* Print table: */
    for(n=1,8, for(k=0,8, print1( T(n,k),", "));print(""))
    /* Print as a flattened table: */
    for(n=0,10, for(k=0,n, print1( T(n-k+1,k),", "));)

Formula

Row n of this table equals the logarithmic derivative of row n of table A304320.
For fixed row r > 1 is a(n) ~ sqrt(1-c) * r^(r*(n+1)) * n^((r-1)*n + r - 1/2) / (sqrt(2*Pi) * c^(n+1) * (r-c)^((r-1)*(n+1)) * exp((r-1)*n)), where c = -LambertW(-r*exp(-r)). - Vaclav Kotesovec, Aug 31 2020

A304322 O.g.f. A(x) satisfies: [x^n] exp( n^2 * x ) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 1, 5, 54, 935, 22417, 685592, 25431764, 1106630687, 55174867339, 3097872254493, 193283918695494, 13260815963831108, 991928912663646012, 80325879518096889760, 7000127337189146831092, 653156403671376068448047, 64963788042207845593775999, 6861040250464949653809027311, 766815367797924824316405828466, 90417908118862070187113849296815
Offset: 0

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

It is conjectured that the coefficients of o.g.f. A(x) consist entirely of integers.
Equals row 2 of table A304320.
O.g.f. A(x) = 1/(1 - x*B(x)), where B(x) is the o.g.f. of A107668.
Logarithmic derivative of o.g.f. A(x), A'(x)/A(x), equals o.g.f. of A304312.
Conjecture: given o.g.f. A(x), the coefficient of x^n in A'(x)/A(x) is the number of connected n-state finite automata with 2 inputs (A006691).

Examples

			O.g.f.: A(x) = 1 + x + 5*x^2 + 54*x^3 + 935*x^4 + 22417*x^5 + 685592*x^6 + 25431764*x^7 + 1106630687*x^8 + 55174867339*x^9 + 3097872254493*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^2*x) / A(x) begins:
n=0: [1, -1, -8, -270, -19584, -2427000, -455544000, -120136161600, ...];
n=1: [1, 0, -9, -296, -20715, -2527704, -470405285, -123376631664, ...];
n=2: [1, 3, 0, -350, -24672, -2867256, -518870528, -133753337280, ...];
n=3: [1, 8, 55, 0, -29547, -3559056, -614943333, -153534305160, ...];
n=4: [1, 15, 216, 2674, 0, -4291704, -783235520, -187656684864, ...];
n=5: [1, 24, 567, 12880, 251541, 0, -948897125, -243358236600, ...];
n=6: [1, 35, 1216, 41634, 1372320, 38884296, 0, -295870371264, ...];
n=7: [1, 48, 2295, 109000, 5106453, 230531544, 8944955227, 0, ...];
n=8: [1, 63, 3960, 248050, 15443328, 949131144, 56257429312, 2865412167360, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^2*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304312:
A'(x)/A(x) = 1 + 9*x + 148*x^2 + 3493*x^3 + 106431*x^4 + 3950832*x^5 + 172325014*x^6 + 8617033285*x^7 + 485267003023*x^8 + 30363691715629*x^9 + ... + A304312(n)*x^n +...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A107668:
B(x) = 1 + 4*x + 45*x^2 + 816*x^3 + 20225*x^4 + 632700*x^5 + 23836540*x^6 + 1048592640*x^7 + 52696514169*x^8 + ... + A107668(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^2 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

a(n) ~ sqrt(1-c) * 2^(2*n - 1/2) * n^(n - 1/2) / (sqrt(Pi) * c^n * (2-c)^n * exp(n)), where c = -A226775 = -LambertW(-2*exp(-2)). - Vaclav Kotesovec, Aug 31 2020

A304319 O.g.f. A(x) satisfies: [x^n] exp( n*(n+1) * x ) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 2, 10, 104, 1772, 42408, 1303504, 48736000, 2139552016, 107629121888, 6094743943584, 383305860004992, 26491391713168640, 1994924925169038848, 162537118868301414912, 14243360542620058589184, 1335710880923054761115904, 133461369304858515494530560, 14154134380237986764584033792, 1587931951984022880659170662400
Offset: 0

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

It is striking that the coefficients of o.g.f. A(x) consist entirely of integers.
Note that if [x^n] exp( (n+1)*(n+2)*x ) / G(x) = 0 then G(x) does not consist entirely of integer coefficients.

Examples

			O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 104*x^3 + 1772*x^4 + 42408*x^5 + 1303504*x^6 + 48736000*x^7 + 2139552016*x^8 + 107629121888*x^9 + 6094743943584*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n*(n+1)*x) / A(x) begins:
n=0: [1, -2, -12, -432, -32640, -4176000, -804504960, -216834831360, ...];
n=1: [1, 0, -16, -520, -36432, -4520768, -856647680, -228458074752, ...];
n=2: [1, 4, 0, -648, -46032, -5341824, -974612736, -254049782400, ...];
n=3: [1, 10, 84, 0, -56832, -6922368, -1194341760, -299397745152, ...];
n=4: [1, 18, 308, 4448, 0, -8528000, -1573784960, -376524725760, ...];
n=5: [1, 28, 768, 20088, 444720, 0, -1938504960, -502258872960, ...];
n=6: [1, 40, 1584, 61560, 2286768, 72032832, 0, -618983309952, ...];
n=7: [1, 54, 2900, 154352, 8074368, 404450176, 17201640064, 0, ...];
n=8: [1, 70, 4884, 339120, 23357568, 1583068032, 102886277760, 5682964174848, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n+1)*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304317:
A'(x)/A(x) = 2 + 16*x + 260*x^2 + 6200*x^3 + 191832*x^4 + 7235152*x^5 + 320372320*x^6 + 16243028896*x^7 + 926219213216*x^8 + 58608051937536*x^9 + 4072302306624576*x^10 + ...+ A304317(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m*(m-1) +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

a(n) ~ sqrt(1-c) * 2^(2*n) * n^(n - 1/2) / (sqrt(Pi) * c^(n + 1/2) * (2-c)^n * exp(n)), where c = -A226775 = -LambertW(-2*exp(-2)). - Vaclav Kotesovec, Aug 31 2020

A304324 O.g.f. A(x) satisfies: [x^n] exp( n^4 * x ) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 1, 113, 76446, 153143499, 673638499100, 5510097691767062, 75312181798660695788, 1595682359653020033714019, 49564410138113345565513815041, 2161639124039437373346491749452440, 127889301139607880711208251726358504898, 9979766671875039854419652569806336108694074
Offset: 0

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

It is conjectured that the coefficients of o.g.f. A(x) consist entirely of integers.
Equals row 4 of table A304320.
O.g.f. A(x) = 1/(1 - x*B(x)), where B(x) is the o.g.f. of A304394.
Logarithmic derivative of o.g.f. A(x), A'(x)/A(x), equals o.g.f. of A304314.
Conjecture: given o.g.f. A(x), the coefficient of x^n in A'(x)/A(x) is the number of connected n-state finite automata with 4 inputs.

Examples

			O.g.f.: A(x) = 1 + x + 113*x^2 + 76446*x^3 + 153143499*x^4 + 673638499100*x^5 + 5510097691767062*x^6 + 75312181798660695788*x^7 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^4*x) / A(x) begins:
n=0: [1, -1, -224, -457326, -3671476224, -80797824300000, ...];
n=1: [1, 0, -225, -458000, -3673306875, -80816186256624, ...];
n=2: [1, 15, 0, -464750, -3701040000, -81092721606624, ...];
n=3: [1, 80, 6175, 0, -3787546875, -82312696206624, ...];
n=4: [1, 255, 64800, 15951250, 0, -84756571206624, ...];
n=5: [1, 624, 389151, 242091424, 146271536901, 0, ...];
n=6: [1, 1295, 1676800, 2170415250, 2804103120000, 3524906587193376, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^4*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304314:
A'(x)/A(x) = 1 + 225*x + 229000*x^2 + 612243125*x^3 + 3367384031526*x^4 + 33056423981177346*x^5 + 527146092112494861420*x^6 + ... + A304314(n)*x^n + ...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A304394:
B(x) = 1 + 112*x + 76221*x^2 + 152978176*x^3 + 673315202500*x^4 + 5508710472669120*x^5 + 75300988091046198131*x^6 + ... + A304394(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^4 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

a(n) ~ sqrt(1-c) * 4^(4*n) * n^(3*n - 1/2) / (sqrt(2*Pi) * c^n * (4-c)^(3*n) * exp(3*n)), where c = -LambertW(-4*exp(-4)). - Vaclav Kotesovec, Aug 31 2020

A304323 O.g.f. A(x) satisfies: [x^n] exp( n^3 * x ) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 1, 25, 2317, 466241, 162016980, 85975473871, 64545532370208, 65062315637060121, 84756897268784533255, 138581022247955235150982, 277878562828788369685779910, 670574499099019193091230751539, 1917288315895234006935990419270242, 6409780596355519454337664637246378856, 24774712941456386970945752104780461007848, 109632095120643795798521114315908854415860345
Offset: 0

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

It is conjectured that the coefficients of o.g.f. A(x) consist entirely of integers.
Equals row 3 of table A304320.
O.g.f. A(x) = 1/(1 - x*B(x)), where B(x) is the o.g.f. of A107675.
Logarithmic derivative of o.g.f. A(x), A'(x)/A(x), equals o.g.f. of A304312.
Conjecture: given o.g.f. A(x), the coefficient of x^n in A'(x)/A(x) is the number of connected n-state finite automata with 3 inputs (A006692).

Examples

			O.g.f.: A(x) = 1 + x + 25*x^2 + 2317*x^3 + 466241*x^4 + 162016980*x^5 + 85975473871*x^6 + 64545532370208*x^7 + 65062315637060121*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^3*x) / A(x) begins:
n=0: [1, -1, -48, -13608, -11065344, -19317285000, -61649646030720, ...];
n=1: [1, 0, -49, -13754, -11120067, -19372748284, -61765715993765, ...];
n=2: [1, 7, 0, -14440, -11517184, -19768841352, -62587640670464, ...];
n=3: [1, 26, 627, 0, -12292251, -20908064898, -64905483973113, ...];
n=4: [1, 63, 3920, 227032, 0, -22551552136, -69768485886848, ...];
n=5: [1, 124, 15327, 1874642, 213958781, 0, -75806801733845, ...];
n=6: [1, 215, 46176, 9893016, 2100211968, 416846973816, 0, ...];
n=7: [1, 342, 116915, 39937660, 13616254341, 4604681316698, 1458047845980391, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^3*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304313:
A'(x)/A(x) = 1 + 49*x + 6877*x^2 + 1854545*x^3 + 807478656*x^4 + 514798204147*x^5 + 451182323794896*x^6 + 519961864703259753*x^7 + ... + A304313(n)*x^n +...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A107675:
B(x) = 1 + 24*x + 2268*x^2 + 461056*x^3 + 160977375*x^4 + 85624508376*x^5 + 64363893844726*x^6 + ... + A107675(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^3 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

a(n) ~ sqrt(1-c) * 3^(3*n) * n^(2*n - 1/2) / (sqrt(2*Pi) * c^n * (3-c)^(2*n) * exp(2*n)), where c = -A226750 = -LambertW(-3*exp(-3)). - Vaclav Kotesovec, Aug 31 2020

A304325 O.g.f. A(x) satisfies: [x^n] exp( n^5 * x ) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 1, 481, 2246281, 43087884081, 2331601789103231, 287133439746933073357, 69929721774643572422651223, 30496192503451926066104677123329, 22113985380962062942048847693898939310, 25177466100486219354624677349405490885006591, 42994825404638061265611776726882581676486680632128
Offset: 0

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

It is conjectured that the coefficients of o.g.f. A(x) consist entirely of integers.
Equals row 5 of table A304320.
O.g.f. A(x) = 1/(1 - x*B(x)), where B(x) is the o.g.f. of A304395.
Logarithmic derivative of o.g.f. A(x), A'(x)/A(x), equals o.g.f. of A304315.
Conjecture: given o.g.f. A(x), the coefficient of x^n in A'(x)/A(x) enumerates the connected n-state finite automata with 5 inputs.

Examples

			O.g.f.: A(x) = 1 + x + 481*x^2 + 2246281*x^3 + 43087884081*x^4 + 2331601789103231*x^5 + 287133439746933073357*x^6 + 69929721774643572422651223*x^7 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^5*x) / A(x) begins:
n=0: [1, -1, -960, -13471920, -1033995878400, -279781615181250000, ...];
n=1: [1, 0, -961, -13474802, -1034049771843, -279786785295370804, ...];
n=2: [1, 31, 0, -13534384, -1035725264896, -279947192760516048, ...];
n=3: [1, 242, 57603, 0, -1044001318107, -281045183102366562, ...];
n=4: [1, 1023, 1045568, 1054175056, 0, -284106842971323856, ...];
n=5: [1, 3124, 9758415, 30465809330, 93986716449725, 0, ...];
n=6: [1, 7775, 60449664, 469967719248, 3652476388472832, 28079364132086235696, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^5*x ) / A(x) = 0 for n >= 0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304315:
A'(x)/A(x) = 1 + 961*x + 6737401*x^2 + 172342090401*x^3 + 11657788116175751*x^4 + 1722786509653595220757*x^5 + 489506033977061086758261063*x^6 + ... + A304315(n)*x^n +...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A304395:
B(x) = 1 + 480*x + 2245320*x^2 + 43083161600*x^3 + 2331513459843750*x^4 + 287128730182879382976*x^5 + ... + A304395(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^5 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

a(n) ~ sqrt(1-c) * 5^(5*n) * n^(4*n - 1/2) / (sqrt(2*Pi) * c^n * (5-c)^(4*n) * exp(4*n)), where c = -LambertW(-5*exp(-5)). - Vaclav Kotesovec, Aug 31 2020

A304318 O.g.f. A(x) satisfies: [x^n] exp( n*(n-1) * x ) / A(x) = 0.

Original entry on oeis.org

1, 0, 2, 24, 436, 10656, 328112, 12183456, 529242224, 26309617536, 1472135847072, 91526938123008, 6258004268952064, 466599240364076544, 37672137946943244288, 3274012281487011586560, 304724394621209905647360, 30239686358027369113804800, 3187164738879981461171955200, 355548230503664593634743375872
Offset: 0

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

It is striking that the coefficients of o.g.f. A(x) consist entirely of integers.

Examples

			O.g.f.: A(x) = 1 + 2*x^2 + 24*x^3 + 436*x^4 + 10656*x^5 + 328112*x^6 + 12183456*x^7 + 529242224*x^8 + 26309617536*x^9 + 1472135847072*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n*(n-1)*x) / A(x) begins:
n=0: [1, 0, -4, -144, -10368, -1267200, -234576000, -61085767680, ...];
n=1: [1, 0, -4, -144, -10368, -1267200, -234576000, -61085767680, ...];
n=2: [1, 2, 0, -160, -11600, -1376928, -250428416, -64479262720, ...];
n=3: [1, 6, 32, 0, -13392, -1630944, -286447104, -71981250048, ...];
n=4: [1, 12, 140, 1440, 0, -1916928, -351444096, -85338800640, ...];
n=5: [1, 20, 396, 7616, 128512, 0, -417488000, -107269127680, ...];
n=6: [1, 30, 896, 26496, 760752, 19101600, 0, -128348167680, ...];
n=7: [1, 42, 1760, 73440, 3034800, 121743072, 4260708864, 0, ...];
n=8: [1, 56, 3132, 174800, 9716608, 535021056, 28597069696, 1331047703552, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n-1)*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304316:
A'(x)/A(x) = 4*x + 72*x^2 + 1736*x^3 + 53040*x^4 + 1961728*x^5 + 85062432*x^6 + 4225904800*x^7 + 236455369344*x^8 + 14705880874944*x^9 + 1005982098054912*x^10 + ... + A304316(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)*(m-2) +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

a(n) ~ sqrt(1-c) * 2^(2*n - 1) * n^(n - 1/2) / (sqrt(Pi) * c^(n - 1/2) * (2-c)^n * exp(n)), where c = -A226775 = -LambertW(-2*exp(-2)). - Vaclav Kotesovec, Aug 31 2020
Showing 1-8 of 8 results.