cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 61 results. Next

A226775 Decimal expansion of the number x other than -2 defined by x*exp(x) = -2/e^2.

Original entry on oeis.org

4, 0, 6, 3, 7, 5, 7, 3, 9, 9, 5, 9, 9, 5, 9, 9, 0, 7, 6, 7, 6, 9, 5, 8, 1, 2, 4, 1, 2, 4, 8, 3, 9, 7, 5, 8, 2, 1, 0, 9, 9, 7, 5, 7, 5, 1, 8, 1, 1, 4, 0, 6, 3, 5, 0, 0, 0, 4, 9, 5, 4, 8, 8, 3, 0, 3, 9, 1, 5, 0, 1, 5, 1, 8, 3, 8, 1, 2, 0, 4, 9, 7, 6, 7, 2, 5, 0, 0, 7, 2, 3, 3, 8, 1, 5, 5, 9, 2, 8, 5, 8, 2, 9, 3, 8
Offset: 0

Views

Author

Keywords

Examples

			-0.4063757399599599076769581241248397582109975751811406350004954883....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[ProductLog[-2/E^2], 105]][[1]] (* corrected by Vaclav Kotesovec, Feb 21 2014 *)
  • PARI
    solve(x=-1, x=0, x*exp(x) + 2*exp(-2)) \\ G. C. Greubel, Nov 15 2017

Formula

Equals -2*A106533.
Equals LambertW(-2*exp(-2)).

A218672 O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n * A(n*x)^n/n! * exp(-n*x*A(n*x)).

Original entry on oeis.org

1, 1, 2, 9, 63, 659, 9833, 206961, 6133990, 256650268, 15213478000, 1281205909177, 153588353066135, 26245044813624300, 6399076697684238375, 2227912079081482302977, 1108302173165578509079527, 788171767077184315422131588, 801638519723021288783092512047
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2012

Keywords

Comments

Compare to the LambertW identities:
(1) Sum_{n>=0} n^n * x^n * G(x)^n/n! * exp(-n*x*G(x)) = 1/(1 - x*G(x)).
(2) Sum_{n>=0} n^n * x^n * C(x)^n/n! * exp(-n*x*C(x)) = C(x), where C(x) = 1 + x*C(x)^2 is the o.g.f. of the Catalan numbers (A000108).

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 63*x^4 + 659*x^5 + 9833*x^6 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^2*x^2*A(2*x)^2/2!*exp(-2*x*A(2*x)) + 3^3*x^3*A(3*x)^3/3!*exp(-3*x*A(3*x)) + 4^4*x^4*A(4*x)^4/4!*exp(-4*x*A(4*x)) + 5^5*x^5*A(5*x)^5/5!*exp(-5*x*A(5*x)) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{A}, A[x_] = 1 + x; For[i = 1, i <= n, i++, A[x_] = Sum[If[k == 0, 1, k^k] x^k A[k x]^k/k! Exp[-k x A[k x] + x O[x]^i] // Normal, {k, 0, n}]]; Coefficient[ A[x], x, n]];
    a /@ Range[0, 18] (* Jean-François Alcover, Sep 29 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^k*x^k*subst(A,x,k*x)^k/k!*exp(-k*x*subst(A,x,k*x)+x*O(x^n))));polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))

A217913 O.g.f.: Sum_{n>=0} (n^3)^n * exp(-n^3*x) * x^n / n!.

Original entry on oeis.org

1, 1, 31, 3025, 611501, 210766920, 110687251039, 82310957214948, 82318282158320505, 106563273280541795575, 173373343599189364594756, 346289681454731077633095526, 833091176987705031151553054843, 2376102520162485084539597049185710
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 31*x^2 + 3025*x^3 + 611501*x^4 + ... + Stirling2(3*n, n)*x^n + ...
where
A(x) = 1 + 1^3*x*exp(-1^3*x) + 2^6*exp(-2^3*x)*x^2/2! + 3^9*exp(-3^3*x)*x^3/3! + 4^12*exp(-4^3*x)*x^4/4! + 5^15*exp(-5^3*x)*x^5/5! + ...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[3*n,n],{n,0,20}] (* Vaclav Kotesovec, Feb 28 2013 *)
  • Maxima
    makelist(stirling2(3*n, n), n, 0, 13); /* Martin Ettl, Oct 15 2012 */
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(k^3)^k*exp(-k^3*x +x*O(x^n))*x^k/k!),n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^3)^k*x^k/(1+k^3*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(3*n, n)}
    for(n=0,20,print1(a(n),", "))
    

Formula

a(n) = Stirling2(3*n, n).
a(n) = [x^(3*n)] (3*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(2*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^3)^k*x^k / (1 + k^3*x)^(k+1).
a(n) ~ 9^n*exp(n*(c+1))*n^(2*n)/((c+3)^(2*n)*sqrt(2*Pi*(c+1)*n)), where c = -0.1785606278779211... = LambertW(-3/exp(3)) = A226750. - Vaclav Kotesovec, Feb 28 2013

A078739 Triangle of generalized Stirling numbers S_{2,2}(n,k) read by rows (n>=1, 2<=k<=2n).

Original entry on oeis.org

1, 2, 4, 1, 4, 32, 38, 12, 1, 8, 208, 652, 576, 188, 24, 1, 16, 1280, 9080, 16944, 12052, 3840, 580, 40, 1, 32, 7744, 116656, 412800, 540080, 322848, 98292, 16000, 1390, 60, 1, 64, 46592, 1446368, 9196992, 20447056, 20453376, 10564304, 3047520, 511392, 50400
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2002

Keywords

Comments

A generalization of the Stirling2 numbers S_{1,1} from A008277.
The g.f. for column k=2*K is (x^K)*pe(K,x)*d(k,x) and for k=2*K+1 it is (x^K)*po(K,x)*2*(K+1)*K*d(k,x), K>= 1, with d(k,x) := 1/product(1-p*(p-1)*x,p=2..k) and the row polynomials pe(n,x) := sum(A089275(n,m)*x^m,m=0..n-1) and po(n,x) := sum(A089276(n,m)*x^m,m=0..n-1). - Wolfdieter Lang, Nov 07 2003
The formula for the k-th column sequence is given in A089511.
Codara et al., show that T(n,k) gives the number of k-colorings of the graph nK_2 (the disjoint union of n copies of the complete graph K_2). An example is given below. - Peter Bala, Aug 15 2013

Examples

			From _Peter Bala_, Aug 15 2013: (Start)
The table begins
n\k | 2    3    4    5    6   7   8
= = = = = = = = = = = = = = = = = =
  1 | 1
  2 | 2    4    1
  3 | 4   32   38   12    1
  4 | 8  208  652  576  188  24   1
...
Graph coloring interpretation of T(2,3) = 4: The graph 2K_2 is 2 copies of K_2, the complete graph on 2 vertices:
o---o  o---o
a   b  c   d
The four 3-colorings of 2K_2 are ac|b|d, ad|b|c, bc|a|d and bd|a|c. (End)
		

Crossrefs

Row sums give A020556. Triangle S_{1, 1} = A008277, S_{2, 1} = A008297 (ignoring signs), S_{3, 1} = A035342, S_{3, 2} = A078740, S_{3, 3} = A078741. A090214 (S_{4,4}).
The column sequences are A000079(n-1)(powers of 2), 4*A016129(n-2), A089271, 12*A089272, A089273, etc.
Main diagonal is A217900.
Cf. A071951 (Legendre-Stirling triangle).

Programs

  • Maple
    # Note that the function implements the full triangle because it can be
    # much better reused and referenced in this form.
    A078739 := proc(n,k) local r;
    add((-1)^(n-r)*binomial(n,r)*combinat[stirling2](n+r,k),r=0..n) end:
    # Displays the truncated triangle from the definition:
    seq(print(seq(A078739(n,k),k=2..2*n)),n=1..6); # Peter Luschny, Mar 25 2011
  • Mathematica
    t[n_, k_] := Sum[(-1)^(n-r)*Binomial[n, r]*StirlingS2[n+r, k], {r, 0, n}]; Table[t[n, k], {n, 1, 7}, {k, 2, 2*n}] // Flatten (* Jean-François Alcover, Apr 11 2013, after Peter Luschny *)

Formula

a(n, k) = sum(binomial(k-2+p, p)*A008279(2, p)*a(n-1, k-2+p), p=0..2) if 2 <= k <= 2*n for n>=1, a(1, 2)=1; else 0. Here A008279(2, p) gives the third row (k=2) of the augmented falling factorial triangle: [1, 2, 2] for p=0, 1, 2. From eq.(21) with r=2 of the Blasiak et al. paper.
a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*A008279(p, 2)^n, p=2..k) for 2 <= k <= 2*n, n>=1. From eq.(19) with r=2 of the Blasiak et al. paper.
a(n, k) = sum(A071951(n, j)*A089503(j, 2*j-k+1), j=ceiling(k/2)..min(n, k-1)), 1<=n, 2<=k<=2n; relation to Legendre-Stirling triangle. Wolfdieter Lang, Dec 01 2003
a(n, k) = A122193(n,k)*2^n/k! - Peter Luschny, Mar 25 2011
E^n = sum_{k=2}^(2n) a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator x^2d^2/dx^2.
The row polynomials R(n,x) are given by the Dobinski-type formula R(n,x) = exp(-x)*sum {k = 0..inf} (k*(k-1))^n*x^k/k!. - Peter Bala, Aug 15 2013

Extensions

More terms from Wolfdieter Lang, Nov 07 2003

A218670 O.g.f.: Sum_{n>=0} n^n * (1+n*x)^n * x^n/n! * exp(-n*x*(1+n*x)).

Original entry on oeis.org

1, 1, 2, 7, 26, 116, 556, 2927, 16388, 97666, 612136, 4023878, 27579410, 196537134, 1451102836, 11074811191, 87160086800, 706055915318, 5876662642720, 50182337830986, 439036984440316, 3930618736372336, 35970734643745496, 336153100655220126, 3205000520319374116
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2012

Keywords

Comments

Compare the o.g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 116*x^5 + 556*x^6 + 2927*x^7 +...
where
A(x) = 1 + (1+x)*x*exp(-x*(1+x)) + 2^2*(1+2*x)^2*x^2/2!*exp(-2*x*(1+2*x)) + 3^3*(1+3*x)^3*x^3/3!*exp(-3*x*(1+3*x)) + 4^4*(1+4*x)^4*x^4/4!*exp(-4*x*(1+4*x)) + 5^5*(1+5*x)^5*x^5/5!*exp(-5*x*(1+5*x)) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);A=sum(k=0,n,k^k*(1+k*x)^k*x^k/k!*exp(-k*x*(1+k*x)+x*O(x^n)));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A218667 O.g.f.: Sum_{n>=0} 1/(1-n*x)^n * x^n/n! * exp(-x/(1-n*x)).

Original entry on oeis.org

1, 0, 1, 1, 4, 13, 46, 181, 778, 3585, 17566, 91171, 499324, 2873839, 17317743, 108933098, 713481122, 4855161425, 34257461754, 250177938679, 1887886966690, 14699340919293, 117933068390123, 973776266303732, 8265721830953558, 72052688932613079, 644393453082317301
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2012

Keywords

Comments

Compare g.f. to the curious identity:
1/(1+x^2) = Sum_{n>=0} (1-n*x)^n * x^n/n! * exp(-x*(1-n*x)).

Examples

			O.g.f.: A(x) = 1 + x^2 + x^3 + 4*x^4 + 13*x^5 + 46*x^6 + 181*x^7 +...
where
A(x) = exp(-x) + x/(1-x)*exp(-x/(1-x)) + x^2/(1-2*x)^2/2!*exp(-x/(1-2*x)) + x^3/(1-3*x)^3/3!*exp(-x/(1-3*x)) + x^4/(1-4*x)^4/4!*exp(-x/(1-4*x)) + x^5/(1-5*x)^5/5!*exp(-x/(1-5*x)) + x^6/(1-6*x)^6/6!*exp(-x/(1-6*x)) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x,X=x+x*O(x^n));A=sum(k=0,n,1/(1-k*X)^k*x^k/k!*exp(-X/(1-k*X)));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* From a(n) = Sum_{k=1..n} Stirling2(n-k, k) * C(-1, k-1) */
    {Stirling2(n, k) = sum(j=0, k, (-1)^(k+j) * binomial(k, j) * j^n) / k!}
    {a(n)=if(n==0, 1, sum(k=1, n, Stirling2(n-k, k) * binomial(n-1, k-1)))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=1..n} Stirling2(n-k, k) * C(n-1, k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jul 30 2014
Antidiagonal sums of Triangle A245111.

A218300 E.g.f. A(x) satisfies A( x/(exp(x)*cosh(x)) ) = exp(2*x)*cosh(2*x).

Original entry on oeis.org

1, 2, 12, 104, 1216, 18112, 329600, 7108096, 177549312, 5046554624, 160947232768, 5694342479872, 221410157133824, 9387011838312448, 431051678297358336, 21316106766591721472, 1129526392342026649600, 63855305138514241257472, 3836490516381680506241024
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2012

Keywords

Comments

More generally, if A( x/(exp(t*x)*cosh(t*x)) ) = exp(m*x)*cosh(m*x),
then A(x) = Sum_{n>=0} m*(n*t+m)^(n-1) * cosh((n*t+m)*x) * x^n/n!.

Examples

			E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 104*x^3/3! + 1216*x^4/4! + 18112*x^5/5! +...
where
A(x) = cosh(2*x) + 2*3^0*cosh(3*x)*x + 2*4^1*cosh(4*x)*x^2/2! + 2*5^2*cosh(5*x)*x^3/3! + 2*6^3*cosh(6*x)*x^4/4! + 2*7^4*cosh(7*x)*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    nmin = 0; nmax = 18; sol = {a[0] -> 1}; nsol = Length[sol];
    Do[A[x_] = Sum[a[k] x^k/k!, {k, 0, n}] /. sol; eq = CoefficientList[ A[x/(Exp[x] Cosh[x])] - Exp[2x] Cosh[2x] + O[x]^(n+1), x][[nsol+1;;]] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, nsol+1, nmax}];
    a /@ Range[nmin, nmax] /. sol (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(Egf=1,X=x+x*O(x^n),R=serreverse(x/(exp(X)*cosh(X)))); Egf=exp(2*R)*cosh(2*R); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula derived from a LambertW identity: */
    {a(n)=local(Egf=1,X=x+x*O(x^n)); Egf=sum(k=0,n,2*(k+2)^(k-1)*cosh((k+2)*X)*x^k/k!); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f.: A(x) = Sum_{n>=0} 2*(n+2)^(n-1) * cosh((n+2)*x) * x^n/n!.
E.g.f.: A(x) = 1 + Sum_{n>=0} 2*(n+2)^(n-1) * sinh((n+2)*x) * x^n/n!.
a(n) ~ c * n^(n-1) / (exp(n) * (LambertW(exp(-1)))^n), where c = sqrt(1 + LambertW(exp(-1)))/LambertW(exp(-1))^2 = 14.5815783688217906961670551786416446... . - Vaclav Kotesovec, Jul 13 2014, updated Jun 10 2019
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( 2*x - 2*LambertW(-x * exp(x)) ).
a(n) = Sum_{k=0..n} (k+2)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + Sum_{k>=0} (k+2)^(k-1) * x^k/(1 - (k+2)*x)^(k+1). (End)

A217914 O.g.f.: Sum_{n>=0} (n^4)^n * exp(-n^4*x) * x^n / n!.

Original entry on oeis.org

1, 1, 127, 86526, 171798901, 749206090500, 6090236036084530, 82892803728383735268, 1751346256720122175776157, 54294340536065700496358447625, 2364684125291482936353925428946680, 139762001313639974628848043262243505970, 10897986831117690497797320098390628446479030
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 127*x^2 + 86526*x^3 + 171798901*x^4 +...+ Stirling2(4*n,n)*x^n + ...
where
A(x) = 1 + 1^4*x*exp(-1^4*x) + 2^8*exp(-2^4*x)*x^2/2! + 3^12*exp(-3^4*x)*x^3/3! + 4^16*exp(-4^4*x)*x^4/4! + 5^20*exp(-5^4*x)*x^5/5! + ...
is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[4*n,n],{n,0,20}] (* Vaclav Kotesovec, May 23 2013 *)
  • Maxima
    makelist(stirling2(4*n, n), n, 0, 12); /* Martin Ettl, Oct 15 2012 */
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(k^4)^k*exp(-k^4*x +x*O(x^n))*x^k/k!),n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^4)^k*x^k/(1+k^4*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(3*n))), 3*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(4*n, n)}
    for(n=0,12,print1(a(n),", "))
    

Formula

a(n) = Stirling2(4*n, n).
a(n) = [x^(4*n)] (4*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(3*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^4)^k*x^k / (1 + k^4*x)^(k+1).
a(n) ~ 2^(8*n)*n^(3*n)/(sqrt(2*Pi*n*(1-c))*c^n*exp(3*n)*(4-c)^(3*n)), where c = -LambertW(-4/exp(4)) = 0.07930960512711... - Vaclav Kotesovec, May 23 2013

A217899 O.g.f.: Sum_{n>=1} (n^2)^(n-1) * exp(-n^2*x) * x^n / n!.

Original entry on oeis.org

1, 1, 6, 65, 1050, 22827, 627396, 20912320, 820784250, 37112163803, 1900842429486, 108823356051137, 6888836057922000, 477898618396288260, 36060660300744309600, 2940812098256837097720, 257780560811305783833450, 24171700822696604400643035, 2414448376056191692970387250
Offset: 1

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

For n>1, a(n) is the number of set partitions of [2*n-2] into n blocks, i.e., Stirling2(2*n-2, n). E.g., a(3) = 6: [12|3|4, 13|2|4, 1|23|4, 14|2|3, 1|24|3, 1|2|34]. - Yuchun Ji, Jan 12 2021

Examples

			O.g.f.: A(x) = x + x^2 + 6*x^3 + 65*x^4 + 1050*x^5 + 22827*x^6 + 627396*x^7 + ... where A(x) = 1^0*x*exp(-1*x) + 2^2*exp(-2^2*x)*x^2/2! + 3^4*exp(-3^2*x)*x^3/3! + 4^6*exp(-4^2*x)*x^4/4! + 5^8*exp(-5^2*x)*x^5/5! + ... simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[ Binomial[2*n - 3, j]*StirlingS2[2*n - j - 3, n-1], {j, 0, n-2}]; a[1] = 1; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Jun 14 2013, after Vladimir Kruchinin *)
  • PARI
    {a(n)=polcoeff(sum(m=1,n,(m^2)^(m-1)*x^m*exp(-m^2*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=1/n!*sum(k=1,n, (-1)^(n-k)*binomial(n,k)*(k^2)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(x+x^2/prod(k=1, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(x+x^2*(1+x)^(2*n-3)/prod(k=0, n-1, 1-k*x +x*O(x^n)), n)}
    for(n=1,20,print1(a(n),", "))

Formula

a(n) = (1/n!) * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * (k^2)^(n-1).
a(n) = [x^n] x + x^2/Product_{k=1..n} (1-k*x).
a(n) = [x^n] x + x^2*(1+x)^(2*n-3) / Product_{k=1..n-1} (1-k*x).
a(n) = Sum_{j=0..n-1} binomial(2*n-1,j)*Stirling2(2*n-j-1,n). - Vladimir Kruchinin, Jun 14 2013
a(n) ~ 2^(2*n-5/2) * n^(n-5/2) / (sqrt(Pi*(1-c)) * exp(n) * c^n *(2-c)^(n-2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 20 2014

A217915 O.g.f.: Sum_{n>=1} (n^5)^n * exp(-n^5*x) * x^n / n!.

Original entry on oeis.org

1, 1, 511, 2375101, 45232115901, 2436684974110751, 299310102746948685757, 72786959006434393367186463, 31712979422428631132831124895809, 22982258052528294182955639980819773510, 26154716515862881292012777396577993781727011
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 511*x^2 + 2375101*x^3 + 45232115901*x^4 +...+ Stirling2(5*n, n)*x^n +...
where
A(x) = 1 + 1^5*x*exp(-1^5*x) + 2^10*exp(-2^5*x)*x^2/2! + 3^15*exp(-3^5*x)*x^3/3! + 4^20*exp(-4^5*x)*x^4/4! + 5^25*exp(-5^5*x)*x^5/5! +...
is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[5*n,n],{n,0,20}] (* Vaclav Kotesovec, May 23 2013 *)
  • Maxima
    makelist(stirling2(5*n, n), n, 0, 10); /* Martin Ettl, Oct 15 2012 */
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(k^5)^k*exp(-k^5*x +x*O(x^n))*x^k/k!),n)}
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, (k^5)^k*x^k/(1+k^5*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(4*n))), 4*n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(5*n, n)}
    for(n=0,12,print1(a(n),", "))
    

Formula

a(n) = Stirling2(5*n, n).
a(n) = [x^(5*n)] (5*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(4*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^5)^k*x^k / (1 + k^5*x)^(k+1).
a(n) ~ n^(4*n)*5^(5*n) / (sqrt(2*Pi*n*(1-c)) * exp(4*n) * (5-c)^(4*n) * c^n), where c = -LambertW(-5/exp(5)) = 0.0348857682557... - Vaclav Kotesovec, May 23 2013
Showing 1-10 of 61 results. Next