A089275
Coefficient triangle of polynomials used for numerator of g.f.s for column sequences of array A078739.
Original entry on oeis.org
1, 1, 18, 1, 118, 600, 1, 412, 11772, 35280, 1, 1060, 97308, 1494576, 3265920, 1, 2270, 508708, 23753736, 249815520, 439084800, 1, 4298, 1989148, 218417400, 6710001408, 54187574400, 80951270400, 1, 7448, 6355048, 1402502400
Offset: 1
A089276
Coefficient triangle of polynomials used for numerator of g.f.s for column sequences of array A078739.
Original entry on oeis.org
1, 1, 8, 1, 48, 180, 1, 160, 3204, 8064, 1, 400, 24972, 311328, 604800, 1, 840, 125468, 4654656, 42454080, 68428800, 1, 1568, 476728, 40968960, 1073980368, 7803233280, 10897286400, 1, 2688, 1490328, 254542720, 15076235088, 306406471680
Offset: 1
A089271
Third column (k=4) of array A078739(n,k) ((2,2)-generalized Stirling2).
Original entry on oeis.org
1, 38, 652, 9080, 116656, 1446368, 17636032, 213311360, 2569812736, 30898216448, 371141389312, 4455873443840, 53483541999616, 641880868118528, 7703040602324992, 92439308337643520, 1109288626710839296
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Index entries for linear recurrences with constant coefficients, signature (20, -108, 144).
-
[6*12^n-6*6^n+2^n: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
-
Table[6*12^n -6*6^n +2^n, {n,0,30}] (* G. C. Greubel, Feb 07 2018 *)
LinearRecurrence[{20,-108,144},{1,38,652},20] (* Harvey P. Dale, Oct 22 2024 *)
-
for(n=0,30, print1(6*12^n -6*6^n +2^n, ", ")) \\ G. C. Greubel, Feb 07 2018
A089272
Fourth column (k=5) of array A078739(n,k) ((2,2)- generalized Stirling2) divided by 12.
Original entry on oeis.org
1, 48, 1412, 34400, 766416, 16296448, 337709632, 6896540160, 139644851456, 2813500878848, 56517475402752, 1133320271749120, 22702062218039296, 454469171469877248, 9094518828981174272, 181952003020274401280
Offset: 0
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003), 198-205.
-
LinearRecurrence[{40, -508, 2304, -2880}, {1, 48, 1412, 34400}, 16] (* Jean-François Alcover, Feb 28 2020 *) (* Jean-François Alcover, Feb 28 2020 *)
A089511
Triangle of integers used to compute column sequences of array A078739 ((2,2)-Stirling2).
Original entry on oeis.org
1, -1, 3, 1, -6, 6, -1, 27, -108, 100, 1, -36, 216, -400, 225, -1, 135, -2160, 10000, -16875, 9261, 1, -162, 3240, -20000, 50625, -55566, 21952, -1, 567, -27216, 350000, -1771875, 4084101, -4302592, 1679616, 1, -648, 36288, -560000, 3543750, -10890936, 17210368, -13436928
Offset: 2
[1]; [ -1,3]; [1,-6,6]; [ -1,27,-108,100]; ...
a(2,1)=A089512(2)*A089275(1,0)*A089278(1,1)/A089500(1)=1*1*1/1=1;
a(3,2)=A089512(3)*A089276(1,0)*A089278(2,2)/A089500(2)=2*1*3/2=3.
a(4,3)=1*(1+18/(4*3))*24/10 =6; a(5,4)= 18*(1+8/(5*4))*2500/630=100.
k=2 column sequence of A078739 is (1*(2*1)^n)/1 = 2^n. k=3: 4*(-1*(2*1)^n + 3*(3*2)^n)/2 (see A016129).
A090211
Alternating row sums of array A078739 ((2,2)-Stirling2).
Original entry on oeis.org
1, -1, -1, 41, -375, -3001, 177063, -990543, -144800527, 3644593711, 214013895023, -12488200175463, -553322483517383, 61495192102867639, 2469939623420627543, -448608666325921194271, -19104207797417792353951, 4742067751530355028847327
Offset: 1
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
Cf. -
A000587(n) from Stirling2 case
A008277 with a(0) := -1.
A020556 (non-alternating sum, generalized Bell-numbers).
-
a[n_] := Sum[(-1)^k FactorialPower[k, 2]^n/k!, {k, 2, Infinity}]*E; Array[a, 18] (* Jean-François Alcover, Sep 01 2016 *)
A089273
Fifth column (k=6) of array A078739(n,k) ((2,2)-generalized Stirling2).
Original entry on oeis.org
1, 188, 12052, 540080, 20447056, 706827968, 23178048832, 736079932160, 22912552596736, 704164858293248, 21462936995648512, 650674662791229440, 19656291799888777216, 592413643343696150528, 17826953303927872110592
Offset: 0
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003), 198-205.
-
a:= n-> (Matrix([[12052,188,1,0,0]]). Matrix(5, (i,j)-> if (i=j-1) then 1 elif j=1 then [70,-1708,17544, -72000,86400][i] else 0 fi)^n)[1,3]: seq(a(n), n=0..30); # Alois P. Heinz, Aug 14 2008
-
LinearRecurrence[{70, -1708, 17544, -72000, 86400}, {1, 188, 12052, 540080, 20447056}, 15] (* Jean-François Alcover, Feb 28 2020 *)
A089512
Denominators used in the computation of the column sequences of array A078739 ((2,2)-Stirling2).
Original entry on oeis.org
1, 2, 1, 18, 6, 360, 90, 12600, 2520, 680400, 113400, 52390800, 7484400, 5448643200, 681080400, 735566832000, 81729648000, 125046361440000, 12504636144000, 26134689540960000, 2375880867360000, 6585941764321920000
Offset: 2
A217900
O.g.f.: Sum_{n>=0} n^n * (n+1)^(n-1) * exp(-n*(n+1)*x) * x^n / n!.
Original entry on oeis.org
1, 1, 4, 38, 576, 12052, 322848, 10564304, 408903680, 18288706544, 928575662400, 52780935007968, 3321208845997056, 229232635832433664, 17221699990084108288, 1399139700462119135232, 122235936429355565580288, 11428226675376971405577984, 1138551595285580854471388160
Offset: 0
O.g.f.: A(x) = 1 + x + 4*x^2 + 38*x^3 + 576*x^4 + 12052*x^5 + 322848*x^6 +...
where
A(x) = 1 + 1^1*2^0*x*exp(-1*2*x) + 2^2*3^1*exp(-2*3*x)*x^2/2! + 3^3*4^2*exp(-3*4*x)*x^3/3! + 4^4*5^3*exp(-4*5*x)*x^4/4! + 5^5*6^4*exp(-5*6*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
-
a[n_] := 1/n!*Sum[(-1)^(n-k)*Binomial[n, k]*k^n*(k+1)^(n-1), {k, 0, n}]; a[0]=1; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 06 2013 *)
-
{a(n)=polcoeff(sum(m=0,n,m^m*(m+1)^(m-1)*x^m*exp(-m*(m+1)*x+x*O(x^n))/m!),n)}
-
{a(n)=(1/n!)*polcoeff(sum(k=0, n, k^k*(k+1)^(k-1)*x^k/(1+k*(k+1)*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^n*(k+1)^(n-1))}
-
{a(n)=polcoeff(1+x*(1+x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
-
{a(n)=polcoeff(1+x*(1-x)^n/prod(k=0, n, 1-(k+1)*x +x*O(x^n)), n)}
for(n=0,30,print1(a(n),", "))
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n)=if(n==0,1,sum(k=0,n-1, binomial(n-1,k) * Stirling2(2*n-k-1,n)))} \\ Paul D. Hanna, Nov 13 2012
/* PARI Programs for the General Case (START) ...................... */
-
{a(n,m=1,t=1,s=1)=polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*exp(-k^s*(t*k+m)*x+x*O(x^n))*x^k/k!), n)}
-
{a(n,m=1,t=1,s=1)=(1/n!)*polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*x^k/(1+k^s*(t*k+m)*x +x*O(x^n))^(k+1)), n)}
-
{a(n,m=1,t=1,s=1)=1/n!*sum(k=0, n, m*(-1)^(n-k)*binomial(n, k)*k^(s*n)*(t*k+m)^(n-1))}
-
{a(n,m=1,t=1,s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1+m*x)^(n-1)/prod(k=0, n, 1-t*k*x +x*O(x^(s*n))), s*n)}
-
{a(n,m=1,t=1,s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1-m*x)^(s*n)/prod(k=0, n, 1-(t*k+m)*x +x*O(x^(s*n))), s*n)}
/* (END) ........................................................... */
A020556
Number of oriented multigraphs on n labeled arcs (without loops).
Original entry on oeis.org
1, 1, 7, 87, 1657, 43833, 1515903, 65766991, 3473600465, 218310229201, 16035686850327, 1356791248984295, 130660110400259849, 14177605780945123273, 1718558016836289502159, 230999008481288064430879, 34208659263890939390952225, 5549763869122023099520756513
Offset: 0
Example: For n = 2 the a(2) = 7 are the number of set partitions of 5 such that the block |3| is a part but no block |m| with m < 3: 3|1245, 3|4|125, 3|5|124, 3|12|45, 3|14|25, 3|15|24, 3|4|5|12. - _Peter Luschny_, Apr 05 2011
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Alois P. Heinz, Table of n, a(n) for n = 0..288
- P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Codara, O. M. D'Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- Peter Luschny, Set partitions
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
- M. Riedel, Set partitions of unique elements from an n-by-m matrix where elements from the same row may not be in the same partition, Mathematics Stack Exchange.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
-
A020556 := proc(n) local k;
add((-1)^(n+k)*binomial(n,k)*combinat[bell](n+k),k=0..n) end:
seq(A020556(n),n=0..17); # Peter Luschny, Mar 27 2011
# Uses floating point arithmetic, increase working precision for large n.
A020556 := proc(n) local r,s,i;
if n=0 then 1 else r := [seq(3,i=1..n-1)]; s := [seq(1,i=1..n-1)];
exp(-x)*2^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
seq(A020556(n),n=0..15); # Peter Luschny, Mar 30 2011
T := proc(n, k) option remember;
if n = 1 then 1
elif n = k then T(n-1,1) - T(n-1,n-1)
else T(n-1,k) + T(n, k+1) fi end:
A020556 := n -> T(2*n+1,n+1);
seq(A020556(n), n = 0..99); # Peter Luschny, Apr 03 2011
-
f[n_] := f[n] = Sum[(k + 2)!^n/((k + 2)!*(k!^n)*E), {k, 0, Infinity}]; Table[ f[n], {n, 1, 16}]
(* Second program: *)
a[n_] := Sum[(-1)^k*Binomial[n, k]*BellB[2n-k], {k, 0, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 11 2017, after Vladeta Jovovic *)
-
a(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(k=0, n, (-1)^k*binomial(n,k)*polcoef(bell, 2*n-k))} \\ Andrew Howroyd, Jan 13 2020
Showing 1-10 of 21 results.
Comments