A002720 Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column.
1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114, 234662231, 3405357682, 53334454417, 896324308634, 16083557845279, 306827170866106, 6199668952527617, 132240988644215842, 2968971263911288999, 69974827707903049154, 1727194482044146637521, 44552237162692939114282
Offset: 0
Examples
G.f. = 1 + 2*x + 7*x^2 + 34*x^3 + 209*x^4 + 1546*x^5 + 13327*x^6 + 130922*x^7 + ... - _Michael Somos_, Jul 31 2018
References
- J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995). [From A. Umar, Sep 09 2008]
- J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 78.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 356.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..443 (first 101 terms from T. D. Noe)
- Francesca Aicardi, Diego Arcis, and Jesús Juyumaya, Ramified inverse and planar monoids, arXiv:2210.17461 [math.RT], 2022.
- A. I. Aptekarev, On linear forms containing the Euler constant, arXiv:0902.1768 [math.NT], 2009.
- T. Banica, The algebraic structure of quantum partial isometries, arXiv:1411.0577 [math.OA], 2014-2015.
- C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, and D. Gouyou-Beauchamps, Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
- Teo Banica, Algebraic invariants of truncated Fourier matrices, arXiv preprint arXiv:1401.5023 [math.QA], 2014.
- D. Borwein, S. Rankin, and L. Renner, Enumeration of injective partial transformations, Discrete Math. (1989), 73: 291-296. [From A. Umar, Sep 09 2008]
- D. Castellanos, A generalization of Binet's formula and some of its consequences, Fib. Quart., 27 (1989), 424-438.
- Aria Chen, Tyler Cummins, Rishi De Francesco, Jate Greene, Tanya Khovanova, Alexander Meng, Tanish Parida, Anirudh Pulugurtha, Anand Swaroop, and Samuel Tsui, Card Tricks and Information, arXiv:2405.21007 [math.HO], 2024. See p. 14.
- Fabio Deelan Cunden, Jakub Czartowski, Giovanni Gramegna, and A. de Oliveira Junior, Relative volume of comparable pairs under semigroup majorization, arXiv:2410.23196 [math-ph], 2024. See pp. 4, 15.
- Dan Daly and Lara Pudwell, Pattern avoidance in rook monoids, Special Session on Patterns in Permutations and Words, Joint Mathematics Meetings, 2013. - From _N. J. A. Sloane_, Feb 03 2013
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 598.
- Olof Giselsson, The Universal C*-Algebra of the Quantum Matrix Ball and its Irreducible *-Representations, arXiv:1801.10608 [math.QA], 2018.
- J. Godbout, Combinatorial Properties of the Mirabolic RSK Algorithm, Thesis presented to The Faculty of the Graduate College of The University of Vermont, May 2013.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 64.
- Z. Janelidze, F. van Niekerk, and J. Viljoen, What is the maximal connected partial symmetry index of a connected graph of a given size?, arXiv:2502.00704 [math.CO], 2025. See p. 3.
- Mark Kac, A history-dependent random sequence defined by Ulam, Advances in Applied Mathematics 10.3 (1989): 270-277.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 219.
- Vaclav Kotesovec, Too many errors around coefficient C1 in asymptotic of sequence A002720, Sep 28 2012. [The bug in program Mathematica was fixed in version 10.2.0.0 / July 2015. _Vaclav Kotesovec_, Jul 25 2015]
- V. Lifschitz and P. Pittel, The number of increasing subsequences of the random permutation J. Combin. Theory Ser. A 31 (1981), no. 1, 1--20. MR0626437 (84e:05012)
- Mathematica Stack Exchange, Wrong Limit with LaguerreL, May 22 2015
- W. D. Munn, The characters of the symmetric inverse semigroup, Proc. Cambridge Philos. Soc. 53 (1957), 13-18. [From A. Umar, Sep 09 2008]
- K. A. Penson, P. Blasiak, A. Horzela, G. H. E. Duchamp, and A. I. Solomon, Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. vol. 50, 083512 (2009).
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- John Riordan, Letter, Apr 28 1976.
- John Riordan, Letter to N. J. A. Sloane, Oct 01 1978.
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
- J. Ser, Les Calculs Formels des Séries de Factorielles. (Annotated scans of some selected pages)
- R. Simion, Combinatorial statistics on type-B analogues of non-crossing partitions and restricted permutations, Electronic J. of Comb. 7 (2000), Art #R9.
- A. Umar, Some combinatorial problems in the theory of symmetric ..., Algebra Disc. Math. 9 (2010) 115-126.
- Luis Verde-Star, A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.
- D. P. Walsh, Notes on functions from subsets of {1,2,...,n} into {1,2,...,n}.
- Eric Weisstein's World of Mathematics, Clique.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Matching.
- Eric Weisstein's World of Mathematics, Rook Complement Graph.
- Eric Weisstein's World of Mathematics, Rook Graph.
- Eric Weisstein's World of Mathematics, Vertex Cover.
- Index entries for sequences related to Laguerre polynomials
Crossrefs
Programs
-
Magma
[Factorial(n)*Evaluate(LaguerrePolynomial(n), -1): n in [0..25]]; // G. C. Greubel, Aug 11 2022
-
Maple
A002720 := proc(n) exp(-x)*n!*hypergeom([n+1], [1], x); simplify(subs(x=1, %)) end: seq(A002720(n), n=0..25); # Peter Luschny, Mar 30 2011 A002720 := proc(n) option remember; if n <= 1 then n+1 ; else 2*n*procname(n-1)-(n-1)^2*procname(n-2) ; end if; end proc: # R. J. Mathar, Mar 09 2017
-
Mathematica
Table[n! LaguerreL[n, -1], {n, 0, 25}] Table[(-1)^n*HypergeometricU[-n, 1, -1], {n, 0, 25}] (* Jean-François Alcover, Jul 15 2015 *) RecurrenceTable[{(n+1)^2 a[n] - 2(n+2) a[n+1] + a[n+2]==0, a[1]==2, a[2]==7}, a, {n, 25}] (* Eric W. Weisstein, Sep 27 2017 *)
-
PARI
a(n) = sum(k=0, n, k!*binomial(n, k)^2 );
-
PARI
a(n) = suminf ( k=0, binomial(n+k,n)/k! ) / ( exp(1)/n! ) /* Gottfried Helms, Nov 25 2006 */
-
PARI
{a(n)=n!^2*polcoeff(exp(x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)} /* Paul D. Hanna, Nov 18 2011 */
-
PARI
{a(n)=if(n==0,1,polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(m+1)*x+x*O(x^n))^2), n))} /* Paul D. Hanna, Nov 27 2012 */
-
PARI
my(x='x+O('x^22)); Vec(serlaplace((1/(1-x))*exp(x/(1-x)))) \\ Joerg Arndt, Aug 11 2022
-
Python
from math import factorial, comb def A002720(n): return sum(factorial(k)*comb(n,k)**2 for k in range(n+1)) # Chai Wah Wu, Aug 31 2023
-
SageMath
[factorial(n)*laguerre(n, -1) for n in (0..25)] # G. C. Greubel, Aug 11 2022
Formula
a(n) = Sum_{k=0..n} k!*C(n, k)^2.
E.g.f.: (1/(1-x))*exp(x/(1-x)). - Don Knuth, Jul 1995
D-finite with recurrence: a(n) = 2*n*a(n-1) - (n-1)^2*a(n-2).
a(n) = Sum_{k>=0} (k+n)! / ((k!)^2*exp(1)). - Robert G. Wilson v, May 02 2002 [corrected by Vaclav Kotesovec, Aug 28 2012]
a(n) = Sum_{m>=0} (-1)^m*A021009(n, m). - Philippe Deléham, Mar 10 2004
a(n) = Sum_{k=0..n} C(n, k)n!/k!. - Paul Barry, May 07 2004
a(n) = Sum_{k=0..n} P(n, k)*C(n, k); a(n) = Sum_{k=0..n} n!^2/(k!*(n-k)!^2). - Ross La Haye, Sep 20 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*Bell(k+1). - Vladeta Jovovic, Mar 18 2005
Define b(n) by b(0) = 1, b(n) = b(n-1) + (1/n) * Sum_{k=0..n-1} b(k). Then b(n) = a(n)/n!. - Franklin T. Adams-Watters, Sep 05 2005
Asymptotically, a(n)/n! ~ (1/2)*Pi^(-1/2)*exp(-1/2 + 2*n^(1/2))/n^(1/4) and so a(n) ~ C*BesselI(0, 2*sqrt(n))*n! with C = exp(-1/2) = 0.6065306597126334236... - Alec Mihailovs, Sep 06 2005, establishing a conjecture of Franklin T. Adams-Watters
a(n) = (n!/e) * Sum_{k>=0} binomial(n+k,n)/k!. - Gottfried Helms, Nov 25 2006
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem): a(n) = Integral_{x=0..oo} x^n*BesselI(0,2*sqrt(x))*exp(-x)/exp(1) dx, n >= 0. - Karol A. Penson and G. H. E. Duchamp (gduchamp2(AT)free.fr), Jan 09 2007
a(n) = n! * LaguerreL[n, -1].
E.g.f.: exp(x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
From Peter Bala, Oct 11 2012: (Start)
Denominators in the sequence of convergents coming from Stieltjes's continued fraction for A073003, the Euler-Gompertz constant G := Integral_{x = 0..oo} 1/(1+x)*exp(-x) dx:
G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793. (End)
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^2. - Paul D. Hanna, Nov 27 2012
E.g.f.: exp(x/(1-x))/(1-x) = G(0)/(1-x) where G(k) = 1 + x/((2*k+1)*(1-x) - x*(1-x)*(2*k+1)/(x + (1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 28 2012
a(n) = Sum_{k=0..n} L(n,k)*(k+1); L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
0 = a(n)*(-24*a(n+2) +99*a(n+3) -78*a(n+4) +17*a(n+5) -a(n+6)) +a(n+1)*(-15*a(n+2) +84*a(n+3) -51*a(n+4) +6*a(n+5)) +a(n+2)*(-6*a(n+2) +34*a(n+3) -15*a(n+4)) +a(n+3)*(+10*a(n+3)) for all n>=0. - Michael Somos, Jul 31 2018
a(n) = Sum_{k=0..n} C(n,k)*k!*A000262(n-k). - Geoffrey Critzer, Jan 07 2023
a(n) = denominator of (1 + n/(1 + n/(1 + (n-1)/(1 + (n-1)/(1 + ... + 1/(1 + 1/(1))))))). See A000262 for the numerators. - Peter Bala, Feb 11 2025
Extensions
2nd description from R. H. Hardin, Nov 1997
3rd description from Wouter Meeussen, Jun 01 1998
Comments