cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A011971 Aitken's array: triangle of numbers {a(n,k), n >= 0, 0 <= k <= n} read by rows, defined by a(0,0)=1, a(n,0) = a(n-1,n-1), a(n,k) = a(n,k-1) + a(n-1,k-1).

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 10, 15, 15, 20, 27, 37, 52, 52, 67, 87, 114, 151, 203, 203, 255, 322, 409, 523, 674, 877, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147, 21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975
Offset: 0

Views

Author

Keywords

Comments

Also called the Bell triangle or the Peirce triangle.
a(n,k) is the number of equivalence relations on {0, ..., n} such that k is not equivalent to n, k+1 is not equivalent to n, ..., n-1 is not equivalent to n. - Don Knuth, Sep 21 2002 [Comment revised by Thijs van Ommen (thijsvanommen(AT)gmail.com), Jul 13 2008]
Named after the New Zealand mathematician Alexander Craig Aitken (1895-1967). - Amiram Eldar, Jun 11 2021

Examples

			Triangle begins:
00:       1
01:       1      2
02:       2      3      5
03:       5      7     10     15
04:      15     20     27     37     52
05:      52     67     87    114    151    203
06:     203    255    322    409    523    674    877
07:     877   1080   1335   1657   2066   2589   3263   4140
08:    4140   5017   6097   7432   9089  11155  13744  17007  21147
09:   21147  25287  30304  36401  43833  52922  64077  77821  94828 115975
10:  115975 137122 162409 192713 229114 272947 325869 389946 467767 562595 678570
...
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 205.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 212.
  • Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 418).
  • Charles Sanders Peirce, On the Algebra of Logic, American Journal of Mathematics, Vol. 3, pages 15-57, 1880. Reprinted in Collected Papers (1935-1958) and in Writings of Charles S. Peirce: A Chronological Edition (Indiana University Press, Bloomington, IN, 1986).
  • Jeffrey Shallit, A triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.

Crossrefs

Borders give Bell numbers A000110. Diagonals give A005493, A011965, A011966, etc., A011968, A011969. Cf. A046934, A011972 (duplicates removed).
Main diagonal is in A094577. Mirror image is in A123346.

Programs

  • GAP
    T:=Flat(List([0..9],n->List([0..n],k->Sum([0..k],i->Binomial(k,i)*Bell(n-k+i))))); # Muniru A Asiru, Oct 26 2018
  • Haskell
    a011971 n k = a011971_tabl !! n !! k
    a011971_row n = a011971_tabl !! n
    a011971_tabl = iterate (\row -> scanl (+) (last row) row) [1]
    -- Reinhard Zumkeller, Dec 09 2012
    
  • Maple
    A011971 := proc(n,k) option remember; if n=0 and k=0 then 1 elif k=0 then A011971(n-1,n-1) else A011971(n,k-1)+A011971(n-1,k-1); fi: end;
    for n from 0 to 12 do lprint([ seq(A011971(n,k),k=0..n) ]); od:
    # Compare the analogue algorithm for the Catalan numbers in A030237.
    BellTriangle := proc(len) local P, T, n; P := [1]; T := [[1]];
    for n from 1 to len - 1 do P := ListTools:-PartialSums([P[-1], op(P)]);
    T := [op(T), P] od; T end:
    BellTriangle(6); ListTools:-Flatten(%); # Peter Luschny, Mar 26 2022
  • Mathematica
    a[0, 0] = 1; a[n_, 0] := a[n, 0] = a[n-1, n-1]; a[n_, k_] := a[n, k] = a[n, k-1] + a[n-1, k-1]; Flatten[ Table[ a[n, k], {n, 0, 9}, {k, 0, n}]] (* Robert G. Wilson v, Mar 27 2004 *)
    Flatten[Table[Sum[Binomial[k, i]*BellB[n-k+i], {i, 0, k}], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, May 24 2016, after Vladeta Jovovic *)
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A011971 = blist = [1]
    for _ in range(10**2):
        b = blist[-1]
        blist = list(accumulate([b]+blist))
        A011971 += blist # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 19 2014
    

Formula

Double-exponential generating function: Sum_{n, k} a(n-k, k) x^n y^k / n! k! = exp(e^{x+y}-1+x). - Don Knuth, Sep 21 2002 [U coordinates, reversed]
a(n,k) = Sum_{i=0..k} binomial(k,i)*Bell(n-k+i). - Vladeta Jovovic, Oct 15 2006

Extensions

Peirce reference from Jon Awbrey, Mar 11 2002
Reference to my paper from Jeffrey Shallit, Jan 23 2015
Moved a comment to A056857 where it belonged. - N. J. A. Sloane, May 02 2015.

A094574 Number of (<=2)-covers of an n-set.

Original entry on oeis.org

1, 1, 5, 40, 457, 6995, 136771, 3299218, 95668354, 3268445951, 129468914524, 5868774803537, 301122189141524, 17327463910351045, 1109375488487304027, 78484513540137938209, 6098627708074641312182, 517736625823888411991202, 47791900951140948275632148
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 12 2004

Keywords

Comments

Also the number of strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. For example, the a(2) = 5 strict multiset partitions of {1, 1, 2, 2} are (1122), (1)(122), (2)(112), (11)(22), (1)(2)(12). - Gus Wiseman, Jul 18 2018

Examples

			From _Gus Wiseman_, Sep 02 2019: (Start)
These are set-systems covering {1..n} with vertex-degrees <= 2. For example, the a(3) = 40 covers are:
  {123}  {1}{23}    {1}{2}{3}     {1}{2}{3}{12}
         {2}{13}    {1}{2}{13}    {1}{2}{3}{13}
         {3}{12}    {1}{2}{23}    {1}{2}{3}{23}
         {1}{123}   {1}{3}{12}    {1}{2}{13}{23}
         {12}{13}   {1}{3}{23}    {1}{2}{3}{123}
         {12}{23}   {2}{3}{12}    {1}{3}{12}{23}
         {13}{23}   {2}{3}{13}    {2}{3}{12}{13}
         {2}{123}   {1}{12}{23}
         {3}{123}   {1}{13}{23}
         {12}{123}  {1}{2}{123}
         {13}{123}  {1}{3}{123}
         {23}{123}  {2}{12}{13}
                    {2}{13}{23}
                    {2}{3}{123}
                    {3}{12}{13}
                    {3}{12}{23}
                    {12}{13}{23}
                    {1}{23}{123}
                    {2}{13}{123}
                    {3}{12}{123}
(End)
		

Crossrefs

Row n=2 of A219585. - Alois P. Heinz, Nov 23 2012
Dominated by A003465.
Graphs with vertex-degrees <= 2 are A136281.
Main diagonal of A346517.

Programs

  • Mathematica
    facs[n_]:=facs[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[Array[Prime,n,1,Times]^2],UnsameQ@@#&]],{n,0,6}] (* Gus Wiseman, Jul 18 2018 *)
    m = 20;
    a094577[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}];
    egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
    CoefficientList[egf + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, May 13 2019 *)

Formula

Row sums of A094573.
E.g.f: exp(-1-1/2*(exp(x)-1))*Sum(exp(x*binomial(n+1, 2))/n!, n=0..infinity) or exp((1-exp(x))/2)*Sum(A094577 (n)*(x/2)^n/n!, n=0..infinity).

A216078 Number of horizontal and antidiagonal neighbor colorings of the odd squares of an n X 2 array with new integer colors introduced in row major order.

Original entry on oeis.org

1, 1, 3, 7, 27, 87, 409, 1657, 9089, 43833, 272947, 1515903, 10515147, 65766991, 501178937, 3473600465, 28773452321, 218310229201, 1949230218691, 16035686850327, 153281759047387, 1356791248984295, 13806215066685433, 130660110400259849, 1408621900803060705
Offset: 1

Views

Author

R. H. Hardin, Sep 01 2012

Keywords

Comments

Number of vertex covers and independent vertex sets of the n-1 X n-1 white bishops graph. Equivalently, the number of ways to place any number of non-attacking bishops on the white squares of an n-1 X n-1 board. - Andrew Howroyd, May 08 2017
Number of pairs of partitions (A<=B) of [n-1] such that the nontrivial blocks of A are of type {k,n-1-k} if n is even, and of type {k,n-k} if n is odd. - Francesca Aicardi, May 28 2022

Examples

			Some solutions for n = 5:
  x 0   x 0   x 0   x 0   x 0   x 0   x 0   x 0   x 0   x 0
  1 x   1 x   1 x   1 x   1 x   1 x   1 x   1 x   1 x   1 x
  x 2   x 0   x 0   x 2   x 0   x 1   x 1   x 2   x 2   x 1
  0 x   2 x   1 x   3 x   1 x   0 x   2 x   3 x   0 x   0 x
  x 3   x 1   x 2   x 2   x 0   x 1   x 1   x 1   x 2   x 0
There are 4 white squares on a 3 X 3 board. There is 1 way to place no non-attacking bishops, 4 ways to place 1 and 2 ways to place 2 so a(4) = 1 + 4 + 2 = 7. - _Andrew Howroyd_, Jun 06 2017
		

Crossrefs

Column 2 of A216084.
Row sums of A274106(n-1).

Programs

  • Maple
    a:= n-> (m-> add(binomial(m, k)*combinat[bell](m+k+e)
               , k=0..m))(iquo(n-1, 2, 'e')):
    seq(a(n), n=1..26);  # Alois P. Heinz, Oct 03 2022
  • Mathematica
    a[n_] := Module[{m, e}, {m, e} = QuotientRemainder[n - 1, 2];
       Sum[Binomial[m, k]*BellB[m + k + e], {k, 0, m}]];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 25 2022, after Francesca Aicardi *)

Formula

a(n) = Sum_{k=0..m} binomial(m, k)*Bell(m+k+e), with m = floor((n-1)/2), e = (n+1) mod 2 and where Bell(n) is the Bell exponential number A000110(n). - Francesca Aicardi, May 28 2022
From Vaclav Kotesovec, Jul 29 2022: (Start)
a(2*k) = A020556(k).
a(2*k+1) = A094577(k). (End)

A123346 Mirror image of the Bell triangle A011971, which is also called the Pierce triangle or Aitken's array.

Original entry on oeis.org

1, 2, 1, 5, 3, 2, 15, 10, 7, 5, 52, 37, 27, 20, 15, 203, 151, 114, 87, 67, 52, 877, 674, 523, 409, 322, 255, 203, 4140, 3263, 2589, 2066, 1657, 1335, 1080, 877, 21147, 17007, 13744, 11155, 9089, 7432, 6097, 5017, 4140, 115975, 94828, 77821, 64077, 52922, 43833, 36401, 30304, 25287, 21147
Offset: 0

Views

Author

N. J. A. Sloane, Oct 14 2006

Keywords

Comments

a(n,k) is k-th difference of Bell numbers, with a(n,1) = A000110(n) for n>0, a(n,k) = a(n,k-1) - a(n-1, k-1), k<=n, with diagonal (k=n) also equal to Bell numbers (n>=0). - Richard R. Forberg, Jul 13 2013
From Don Knuth, Jan 29 2018: (Start)
If the offset here is changed from 0 to 1, then we can say:
a(n,k) is the number of equivalence classes of [n] in which 1 not equiv to 2, ..., 1 not equiv to k.
In Volume 4A, page 418, I pointed out that a(n,k) is the number of set partitions in which k is the smallest of its block.
And in exercise 7.2.1.5--33, I pointed out that a(n,k) is the number of equivalence relations in which 1 not equiv to 2, 2 not equiv to 3, ..., k-1 not equiv to k. (End)

Examples

			Triangle begins:
    1
    2   1
    5   3   2
   15  10   7  5
   52  37  27 20 15
  203 151 114 87 67 52
  ...
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 418).

Crossrefs

Cf. A011971. Borders give Bell numbers A000110. Diagonals give A005493, A011965, A011966, A011968, A011969, A046934, A011972, A094577, A095149, A106436, A108041, A108042, A108043.

Programs

  • Haskell
    a123346 n k = a123346_tabl !! n !! k
    a123346_row n = a123346_tabl !! n
    a123346_tabl = map reverse a011971_tabl
    -- Reinhard Zumkeller, Dec 09 2012
    
  • Mathematica
    a[n_, k_] := Sum[Binomial[n - k, i - k] BellB[i], {i, k, n}];
    Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2018 *)
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A123346_list = blist = [1]
    for _ in range(2*10**2):
        b = blist[-1]
        blist = list(accumulate([b]+blist))
        A123346_list += reversed(blist)
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

a(n,k) = Sum_{i=k..n} binomial(n-k,i-k)*Bell(i). - Vladeta Jovovic, Oct 14 2006

Extensions

More terms from Alexander Adamchuk and Vladeta Jovovic, Oct 14 2006

A182933 Generalized Bell numbers based on the rising factorial powers; square array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 5, 27, 13, 1, 1, 15, 409, 778, 73, 1, 1, 52, 9089, 104149, 37553, 501, 1, 1, 203, 272947, 25053583, 57184313, 2688546, 4051, 1, 1, 877, 10515147, 9566642254, 192052025697, 56410245661, 265141267, 37633, 1
Offset: 0

Views

Author

Peter Luschny, Mar 29 2011

Keywords

Comments

These numbers are related to the generalized Bell numbers based on the falling factorial powers (A090210).
The square array starts for n>=0, k>=0:
n\k=0,1,.. A000012,A000262,A182934,...
0: A000012: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1: A000110: 1, 1, 2, 5, 15, 52, 203, 877, 4140, ...
2: A094577: 1, 3, 27, 409, 9089, 272947, 10515147, ...
3: A182932: 1, 13, 778, 104149, 25053583, 9566642254, ...
4: : 1, 73, 37553, 57184313, 192052025697, ...
5: : 1, 501, 2688546, 56410245661, ...
6: .... : 1, 4051, 265141267, 89501806774945, ...

Crossrefs

Programs

  • Maple
    A182933_AsSquareArray := proc(n,k) local r,s,i;
    r := [seq(n+1,i=1..k)]; s := [seq(1,i=1..k-1),2];
    exp(-x)*n!^k*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) end:
    seq(lprint(seq(A182933_AsSquareArray(n,k),k=0..6)),n=0..6);
  • Mathematica
    a[n_, k_] := Exp[-1]*n!^k*HypergeometricPFQ[ Table[n+1, {k}], Append[ Table[1, {k-1}], 2], 1.]; Table[ a[n-k, k] // Round , {n, 0, 8}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)

Formula

Let r_k = [n+1,...,n+1] (k occurrences of n+1), s_k = [1,...,1,2] (k-1 occurrences of 1) and F_k the generalized hypergeometric function of type k_F_k, then a(n,k) = exp(-1)*n!^k*F_k(r_k, s_k | 1).
Let B_{n}(x) = sum_{j>=0}(exp((j+n-1)!/(j-1)!*x-1)/j!) then a(n,k) = k! [x^k] series(B_{n}(x)), where [x^k] denotes the coefficient of x^k in the Taylor series for B_{n}(x).

A178165 Number of unordered collections of distinct nonempty subsets of an n-element set where each element appears in at most 2 subsets.

Original entry on oeis.org

1, 2, 8, 59, 652, 9736, 186478, 4421018, 126317785, 4260664251, 166884941780, 7489637988545, 380861594219460, 21739310882945458, 1381634777325000263, 97089956842985393297, 7497783115765911443879, 632884743974716421132084
Offset: 0

Views

Author

Daniel E. Loeb, Dec 16 2010

Keywords

Comments

If each element must appear in exactly 1 subset, then we get the Bell numbers A000110.
If each element must appear in exactly 2 subsets, then we get A002718.

Crossrefs

Programs

  • Mathematica
    terms = m = 30;
    a094577[n_] := Sum[Binomial[n, k]*BellB[2n-k], {k, 0, n}];
    egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
    A094574 = CoefficientList[egf + O[x]^m, x]*Range[0, m-1]!;
    a[n_] := Sum[Binomial[n, k]*A094574[[k+1]], {k, 0, n}];
    Table[a[n], {n, 0, m-1}] (* Jean-François Alcover, May 24 2019 *)
  • Python
    from numpy import array
    def toBinary(n, k):
        ans=[]
        for i in range(k):
            ans.insert(0, n%2)
            n=n>>1
        return array(ans)
    def powerSet(k): return [toBinary(n,k) for n in range(1,2**k)]
    def courcelle(maxUses, remainingSets, exact=False):
        if exact and not all(maxUses<=sum(remainingSets)): ans=0
        elif len(remainingSets)==0: ans=1
        else:
            set0=remainingSets[0]
            if all(set0<=maxUses): ans=courcelle(maxUses-set0,remainingSets[1:],exact=exact)
            else: ans=0
            ans+=courcelle(maxUses,remainingSets[1:],exact=exact)
        return ans
    for i in range(10):
        print(i, courcelle(array([2]*i),powerSet(i),exact=False))

Formula

Binomial transform of A094574: a(n) = Sum_{k=0..n} C(n,k)*A094574(k).

Extensions

Edited and corrected by Max Alekseyev, Dec 19 2010

A363452 Total number of blocks containing only odd elements in all partitions of [n].

Original entry on oeis.org

0, 1, 1, 5, 12, 62, 206, 1189, 4949, 31775, 156972, 1110280, 6301550, 48637701, 310279615, 2591820857, 18293310174, 164218811718, 1267153412532, 12152174863961, 101557600812015, 1035203191874931, 9299499328238110, 100314319611860936, 962663031508255416
Offset: 0

Views

Author

Alois P. Heinz, Jun 02 2023

Keywords

Examples

			a(3) = 5 = 0 + 1 + 1 + 1 + 2 : 123, 12|3, 13|2, 1|23, 1|2|3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);
          add(Stirling2(i, k)*binomial(u, i)*
          add(Stirling2(g, j)*j^(u-i), j=0..g), i=k..u)
        end:
    a:= n-> add(b(n, k)*k, k=0..ceil(n/2)):
    seq(a(n), n=0..25);
    # second Maple program:
    b:= proc(n, x, y, m) option remember; `if`(n=0, y,
          `if`(x+m>0, b(n-1, y, x, m)*(x+m), 0)+b(n-1, y, x+1, m)+
          `if`(y>0, b(n-1, y-1, x, m+1)*y, 0))
        end:
    a:= n-> b(n, 0$3):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, x_, y_, m_] := b[n, x, y, m] = If[n == 0, y,
         If[x + m > 0, b[n-1, y, x, m]*(x+m), 0] + b[n-1, y, x+1, m] +
         If[y > 0, b[n-1, y-1, x, m+1]*y, 0]];
    a[n_] := b[n, 0, 0, 0];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 08 2023, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..ceiling(n/2)} k * A124420(n,k).
a(n) = A363434(n) - A363453(n).
a(2n) = A363453(2n).
a(2n+1) = A363453(2n+1) + A094577(n).

A363453 Total number of blocks containing only even elements in all partitions of [n].

Original entry on oeis.org

0, 0, 1, 2, 12, 35, 206, 780, 4949, 22686, 156972, 837333, 6301550, 38122554, 310279615, 2090641920, 18293310174, 135445359397, 1267153412532, 10202944645270, 101557600812015, 881921432827544, 9299499328238110, 86508104545175503, 962663031508255416
Offset: 0

Views

Author

Alois P. Heinz, Jun 02 2023

Keywords

Examples

			a(3) = 2 = 0 + 0 + 1 + 0 + 1 : 123, 12|3, 13|2, 1|23, 1|2|3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);
          add(Stirling2(i, k)*binomial(g, i)*
          add(Stirling2(u, j)*j^(g-i), j=0..u), i=k..g)
        end:
    a:= n-> add(b(n, k)*k, k=0..floor(n/2)):
    seq(a(n), n=0..25);
    # second Maple program:
    b:= proc(n, x, y, m) option remember; `if`(n=0, x,
          `if`(x+m>0, b(n-1, y, x, m)*(x+m), 0)+b(n-1, y, x+1, m)+
          `if`(y>0, b(n-1, y-1, x, m+1)*y, 0))
        end:
    a:= n-> b(n, 0$3):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, x_, y_, m_] := b[n, x, y, m] = If[n == 0, x,
        If[x+m > 0, b[n-1, y, x, m]*(x+m), 0] + b[n-1, y, x+1, m] +
        If[y > 0, b[n-1, y-1, x, m+1]*y, 0]];
    a[n_] := b[n, 0, 0, 0];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 08 2023, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..floor(n/2)} k * A124422(n,k).
a(n) = A363434(n) - A363452(n).
a(2n) = A363452(2n).
a(2n+1) = A363452(2n+1) - A094577(n).

A182932 Generalized Bell numbers, row 3 of A182933.

Original entry on oeis.org

1, 13, 778, 104149, 25053583, 9566642254, 5355754528213, 4158610032552331, 4298349730542075004, 5729540573235706713253, 9603970716624058765049701, 19831898899231255981742972188, 49594487447520772034033468182501
Offset: 0

Views

Author

Peter Luschny, Mar 29 2011

Keywords

Crossrefs

Programs

  • Maple
    A182932 := proc(n) local r,s,i; r := [seq(4,i=1..n)]; s := [seq(1,i=1..n-1),2]; exp(-x)*6^n*hypergeom(r,s,x); round(evalf(subs(x=1,%),66)) end:
    seq(A182932(n),n=0..12);
  • Mathematica
    a[n_] := 3!^n*HypergeometricPFQ[ Table[4, {n}], Append[ Table[1, {n-1}], 2], 1.`40.]/E; Table[Round[a[n]], {n, 0, 12}] (* Jean-François Alcover, Jul 29 2013 *)

Formula

Let r = [4,...,4] (n occurrences of 4), s = [1,...,1,2] (n-1 occurrences of 1)
and F_n the generalized hypergeometric function of type n_F_n, then
a(n) = exp(-1)*3!^n*F_n(r,s |1).
e.g.f.: Sum_{j>=0}(exp((j+2)!/(j-1)!*x-1)/j!).

A340822 a(n) = exp(-1) * Sum_{k>=0} (k*(k + n))^n / k!.

Original entry on oeis.org

1, 3, 43, 1211, 54812, 3572775, 313493737, 35368945463, 4962511954307, 844198388785291, 170675800745636572, 40352181663578992883, 11008690527354504977193, 3426969405868832970281647, 1205708016597226199323015459, 475502109963529414669658708847
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Exp[-1] Sum[(k (k + n))^n/k!, {k, 0, Infinity}], {n, 0, 15}]
    Join[{1}, Table[Sum[Binomial[n, k] BellB[2 n - k] n^k, {k, 0, n}], {n, 1, 15}]]

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * Bell(2*n-k) * n^k.
Showing 1-10 of 12 results. Next