cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Daniel E. Loeb

Daniel E. Loeb's wiki page.

Daniel E. Loeb has authored 13 sequences. Here are the ten most recent ones:

A178171 Number of collections of nonempty subsets of an n-element set where each element appears in at most 3 subsets.

Original entry on oeis.org

1, 2, 8, 109, 3623, 200522, 16514461, 1912959395, 298569495981, 60701549078701, 15647889334180500, 5003666238486522124, 1948975409748003520112, 910680909359710587298621, 503845222094502583681150340, 326363222435413478204610417626, 245078255691857705139839897934085
Offset: 0

Author

Daniel E. Loeb, Dec 17 2010

Keywords

Crossrefs

Row n=3 of A330964.
At most 1 subset gives Bell numbers A000110, at most 2 subsets gives A178165.

Extensions

a(7)-a(8) from Bert Dobbelaere, Sep 10 2019
Terms a(9) and beyond from Andrew Howroyd, Jan 04 2020

A178165 Number of unordered collections of distinct nonempty subsets of an n-element set where each element appears in at most 2 subsets.

Original entry on oeis.org

1, 2, 8, 59, 652, 9736, 186478, 4421018, 126317785, 4260664251, 166884941780, 7489637988545, 380861594219460, 21739310882945458, 1381634777325000263, 97089956842985393297, 7497783115765911443879, 632884743974716421132084
Offset: 0

Author

Daniel E. Loeb, Dec 16 2010

Keywords

Comments

If each element must appear in exactly 1 subset, then we get the Bell numbers A000110.
If each element must appear in exactly 2 subsets, then we get A002718.

Crossrefs

Programs

  • Mathematica
    terms = m = 30;
    a094577[n_] := Sum[Binomial[n, k]*BellB[2n-k], {k, 0, n}];
    egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
    A094574 = CoefficientList[egf + O[x]^m, x]*Range[0, m-1]!;
    a[n_] := Sum[Binomial[n, k]*A094574[[k+1]], {k, 0, n}];
    Table[a[n], {n, 0, m-1}] (* Jean-François Alcover, May 24 2019 *)
  • Python
    from numpy import array
    def toBinary(n, k):
        ans=[]
        for i in range(k):
            ans.insert(0, n%2)
            n=n>>1
        return array(ans)
    def powerSet(k): return [toBinary(n,k) for n in range(1,2**k)]
    def courcelle(maxUses, remainingSets, exact=False):
        if exact and not all(maxUses<=sum(remainingSets)): ans=0
        elif len(remainingSets)==0: ans=1
        else:
            set0=remainingSets[0]
            if all(set0<=maxUses): ans=courcelle(maxUses-set0,remainingSets[1:],exact=exact)
            else: ans=0
            ans+=courcelle(maxUses,remainingSets[1:],exact=exact)
        return ans
    for i in range(10):
        print(i, courcelle(array([2]*i),powerSet(i),exact=False))

Formula

Binomial transform of A094574: a(n) = Sum_{k=0..n} C(n,k)*A094574(k).

Extensions

Edited and corrected by Max Alekseyev, Dec 19 2010

A178173 Number of collections of nonempty subsets of an n-element set where each element appears in at most 4 subsets.

Original entry on oeis.org

1, 2, 8, 128, 11087, 2232875, 775098224, 428188962261, 355916994389700, 425272149099677521, 703909738878615927739, 1565842283246869237505246, 4565002967677134523844716754, 17076464900445281560851997140670, 80494979734877344662882495100752511
Offset: 0

Author

Daniel E. Loeb, Dec 17 2010

Keywords

Crossrefs

Row n=4 of A330964.
Replacing limit of 2 with a limit of 1 gives the Bell numbers A000110, limit of 2 gives A178165, limit of 3 gives A178171.

Programs

  • PARI
    \\ See A330964 for efficient code to compute this sequence. - Andrew Howroyd, Jan 04 2020
  • Python
    from numpy import array
    def toBinary(n,k):
        ans=[]
        for i in range(k):
            ans.insert(0,n%2)
            n=n>>1
        return array(ans)
    def powerSet(k): return [toBinary(n,k) for n in range(1,2**k)]
    def courcelle(maxUses,remainingSets,exact=False):
        if exact and not all(maxUses<=sum(remainingSets)): ans=0
        elif len(remainingSets)==0: ans=1
        else:
            set0=remainingSets[0]
            if all(set0<=maxUses): ans=courcelle(maxUses-set0,remainingSets[1:],exact=exact)
            else: ans=0
            ans+=courcelle(maxUses,remainingSets[1:],exact=exact)
        return ans
    for i in range(10):
        print(i, courcelle(array([4]*i),powerSet(i),exact=False))
    

Extensions

a(6)-a(8) from Bert Dobbelaere, Sep 10 2019
Terms a(9) and beyond from Andrew Howroyd, Jan 04 2020

A176341 a(n) = the location of the first appearance of the decimal expansion of n in the decimal expansion of Pi.

Original entry on oeis.org

32, 1, 6, 0, 2, 4, 7, 13, 11, 5, 49, 94, 148, 110, 1, 3, 40, 95, 424, 37, 53, 93, 135, 16, 292, 89, 6, 28, 33, 186, 64, 0, 15, 24, 86, 9, 285, 46, 17, 43, 70, 2, 92, 23, 59, 60, 19, 119, 87, 57, 31, 48, 172, 8, 191, 130, 210, 404, 10, 4, 127, 219, 20, 312, 22, 7, 117, 98, 605, 41
Offset: 0

Author

Daniel E. Loeb, Apr 15 2010

Keywords

Comments

It is unknown whether Pi is a normal number. If it is (at least in base 10) then this sequence is well defined.
The numbers a(n) refer to the position of the initial digit of n in the decimal expansion of Pi, where "3" is at position a(3)=0, "1" is at position a(1)=1, etc. This is also the numbering scheme used on the "Pi search page" cited among the LINKS. See A232013 for a sequence based on iterations of this one. See A032445 for a variant of the present sequence, where numbering starts at one. - M. F. Hasler, Nov 16 2013

Crossrefs

Programs

  • Mathematica
    p=ToString[FromDigits[RealDigits[N[Pi, 10^4]][[1]]]]; Do[Print[StringPosition[p, ToString[n]][[1]][[1]] - 1], {n, 0, 100}] (* Vincenzo Librandi, Apr 17 2017 *)
    With[{pid=RealDigits[Pi,10,800][[1]]},Flatten[Table[ SequencePosition[ pid,IntegerDigits[n],1],{n,0,70}],1]][[All,1]]-1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 27 2019 *)
  • PARI
    A176341(n)=my(L=#Str(n));n=Mod(n,10^L);for(k=L-1,9e9,Pi\.1^k-n||return(k+1-L)) \\ Make sure to use sufficient realprecision, e.g. via \p999. - M. F. Hasler, Nov 16 2013
  • Python
    pi = "314159265358979323846264338327950288419716939937510582097494459230..."
    [ pi.find(str(i)) for i in range(10000) ]
    

Formula

a(n) = A032445(n)-1. - M. F. Hasler, Nov 16 2013
a(n) = 0 if n is in A011545, otherwise a(n) = A014777(n). - Pontus von Brömssen, Aug 31 2024

A018223 Number of 5-voter voting schemes with n linearly ranked choices.

Original entry on oeis.org

1, 81, 2646, 43556, 476120, 3785410
Offset: 1

Keywords

A008842 Number of inequivalent self-dual Boolean functions of n variables with transitive symmetry group.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 1, 2, 0, 24, 28, 57259, 0
Offset: 0

Keywords

A008841 Number of self-dual Boolean functions of n variables with transitive symmetry group.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 12, 31, 0, 570361, 1441440, 207648650161, 0
Offset: 0

Keywords

A008840 Number of monotone self-dual Boolean functions of n variables that are inequivalent under the symmetric group.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 30, 716
Offset: 0

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.

Crossrefs

Cf. A107765 (non-isomorphic self dual monotones = differences of A008840?). - Olivier Gérard, Oct 11 2012

A007007 Valence of graph of maximal intersecting families of sets.

Original entry on oeis.org

0, 1, 3, 4, 10, 15, 35, 56, 126, 210, 462, 792, 1716, 3003, 6435, 11440, 24310, 43758, 92378, 167960, 352716, 646646, 1352078, 2496144, 5200300, 9657700, 20058300, 37442160, 77558760, 145422675, 300540195, 565722720, 1166803110, 2203961430
Offset: 1

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Equals A037952 except for n=1 [Loeb & Meyerowitz, theorem 16]. - Andrey Zabolotskiy, Sep 19 2017

Extensions

More terms from Andrey Zabolotskiy, Sep 19 2017

A007010 Number of 4-voter voting schemes with n linearly ranked choices.

Original entry on oeis.org

1, 12, 81, 372, 1332, 3984, 10420, 24540, 53145, 107436, 205065, 372792, 649936, 1092672, 1779408, 2817288, 4350105, 6567660, 9716905, 14114892, 20163924, 28368912, 39357396, 53902212, 72947329, 97636812, 129347505, 169725360, 220726080, 284659968, 364241728
Offset: 1

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    LinearRecurrence[{6,-12,2,27,-36,0,36,-27,-2,12,-6,1},{1,12,81,372,1332,3984,10420,24540,53145,107436,205065,372792},40] (* Harvey P. Dale, Feb 12 2023 *)
  • PARI
    Vec(x*(1+6*x+21*x^2+28*x^3+21*x^4+6*x^5+x^6)/((1+x)^3*(1-x)^9) + O(x^100)) \\ Colin Barker, Jan 07 2016

Formula

G.f.: x*(1+6*x+21*x^2+28*x^3+21*x^4+6*x^5+x^6)/((1+x)^3*(1-x)^9). - Ralf Stephan, Apr 23 2004
From Colin Barker, Jan 07 2016: (Start)
a(n) = (n^8+16*n^7+106*n^6+376*n^5+784*n^4+1024*n^3+864*n^2+384*n)/3840 for n even.
a(n) = (n^8+16*n^7+106*n^6+376*n^5+784*n^4+1024*n^3+894*n^2+504*n+135)/3840 for n odd.
(End)