A182932
Generalized Bell numbers, row 3 of A182933.
Original entry on oeis.org
1, 13, 778, 104149, 25053583, 9566642254, 5355754528213, 4158610032552331, 4298349730542075004, 5729540573235706713253, 9603970716624058765049701, 19831898899231255981742972188, 49594487447520772034033468182501
Offset: 0
Peter Luschny, Mar 29 2011
-
A182932 := proc(n) local r,s,i; r := [seq(4,i=1..n)]; s := [seq(1,i=1..n-1),2]; exp(-x)*6^n*hypergeom(r,s,x); round(evalf(subs(x=1,%),66)) end:
seq(A182932(n),n=0..12);
-
a[n_] := 3!^n*HypergeometricPFQ[ Table[4, {n}], Append[ Table[1, {n-1}], 2], 1.`40.]/E; Table[Round[a[n]], {n, 0, 12}] (* Jean-François Alcover, Jul 29 2013 *)
A182934
Generalized Bell numbers, column 2 of A182933.
Original entry on oeis.org
1, 2, 27, 778, 37553, 2688546, 265141267, 34260962282, 5594505151713, 1123144155626338, 271300013006911211, 77489174023697484522, 25797166716252173322577, 9890278784047791697198658, 4322087630240844404678150883
Offset: 0
-
A182934 := proc(n)
exp(-x)*n!^2*hypergeom([n+1,n+1],[1,2],x); round(evalf(subs(x=1,%),66)) end:
seq(A182934(n),n=0..14);
-
a[n_] := n!^2*HypergeometricPFQ[{n+1, n+1}, {1, 2}, 1.`40.]/E; Table[a[n] // Round, {n, 0, 14}] (* Jean-François Alcover, Jul 29 2013 *)
A090210
Triangle of certain generalized Bell numbers.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 7, 1, 1, 15, 87, 34, 1, 1, 52, 1657, 2971, 209, 1, 1, 203, 43833, 513559, 163121, 1546, 1, 1, 877, 1515903, 149670844, 326922081, 12962661, 13327, 1, 1, 4140, 65766991, 66653198353, 1346634725665, 363303011071, 1395857215, 130922, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 7, 1, 1;
15, 87, 34, 1, 1;
52, 1657, 2971, 209, 1, 1;
203, 43833, 513559, 163121, 1546, 1, 1;
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
-
A090210_AsSquareArray := proc(n,k) local r,s,i;
if k=0 then 1 else r := [seq(n+1,i=1..k-1)]; s := [seq(1,i=1..k-1)];
exp(-x)*n!^(k-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
seq(lprint(seq(A090210_AsSquareArray(n,k),k=0..6)),n=0..6);
# Peter Luschny, Mar 30 2011
-
t[n_, k_] := t[n, k] = Sum[(n+j)!^(k-1)/(j!^k*E), {j, 0, Infinity}]; t[_, 0] = 1;
Flatten[ Table[ t[n-k+1, k], {n, 0, 8}, {k, n, 0, -1}]][[1 ;; 43]] (* Jean-François Alcover, Jun 17 2011 *)
A308537
a(n) = exp(-1) * Sum_{k>=0} (k + n - 1)!^n/(k!*(k - 1)!^n).
Original entry on oeis.org
1, 1, 27, 104149, 192052025697, 401307330353526478576, 1891640643805444860923624673784723, 35720630453521390599442254755998585843785410691847, 4425335738067265257031641848982502946902371654704454173556393591653249
Offset: 0
-
Table[Exp[-1] Sum[(k + n - 1)!^n/(k! (k - 1)!^n), {k, 0, Infinity}], {n, 0, 8}]
Showing 1-4 of 4 results.
Comments