cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A069223 Generalized Bell numbers: row 3 of A090210.

Original entry on oeis.org

1, 1, 34, 2971, 513559, 149670844, 66653198353, 42429389528215, 36788942253042556, 41888564490333642283, 60862147523250910055785, 110264570238241604072673394, 244397290937585028603794094349, 652229940568729289038518033117685, 2067551365133160531453420400711013314, 7694635622932764203876848262780670955447
Offset: 0

Views

Author

Karol A. Penson, Apr 12 2002

Keywords

Comments

a(n) occurs in the process of normal ordering of the n-th power of a product of the cubes of the boson creation and boson annihilation operators.
a(11) = 110264570238241604072673394 =~ 10^26.
From Peter Luschny, Mar 27 2011: (Start)
Let B_{m}(x) = sum_{j>=0}(exp(j!/(j-m)!*x-1)/j!) then a(n) = n! [x^n] taylor(B_{3}(x)), where [x^n] denotes the coefficient of x^n in the Taylor series for B_{3}(x).
a(n) is row 3 of the square array representation of A090210. (End)

Crossrefs

Cf. A000110 and A020556, if k+3 is replaced by k+1 or k+2, respectively.
Cf. A090210.

Programs

  • Maple
    A069223 := proc(n) local r,s,i;
    if n=0 then 1 else r := [seq(4,i=1..n-1)]; s := [seq(1,i=1..n-1)];
    exp(-x)*6^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
    seq(A069223(n),n=1..15); # Peter Luschny, Mar 30 2011
  • Mathematica
    f[n_] := f[n] = Sum[(k + 3)!^n/((k + 3)!*(k!^n)*E), {k, 0, Infinity}]; Table[ f[n], {n, 1, 9}]
    a[n_] := (* row sum of A078741 *) Sum[(-1)^k*Sum[(-1)^p*((p - 2)*(p - 1)*p)^n*Binomial[k, p], {p, 3, k}]/k!, {k, 3, 3n}]; Array[a, 15] (* Jean-François Alcover, Sep 01 2015 *)
  • PARI
    default(realprecision, 500); for(n=0, 20, print1(if(n==0, 1, round(exp(-1)*suminf(k=0, ((k+3)!)^n/( (k+3)!*(k!)^n)))), ", ")) \\ G. C. Greubel, May 15 2018

Formula

a(n) = exp(-1) * Sum_{k>=0} ((k+3)!)^n/((k+3)!*(k!)^n), n>=1. This is a Dobinski-type summation formula.
a(n) = exp(-1) * Sum_{k>=3} (k*(k-1)*(k-2))^n/k!, n>=1. Usually a(0) := 1. (From eq.(26) with r=3 of the Schork reference; rewritten original eq.(25) with r=3 of the Blasiak et al. reference.)
E.g.f. with a(0) := 1: (sum((exp(k*(k-1)*(k-2)*x))/k!, k=3..infinity)+5/2)/exp(1). From top of p. 4656 with r=3 of the Schork reference.

Extensions

Edited by Robert G. Wilson v, Apr 30 2002
a(0)=1 prepended by Alois P. Heinz, Aug 01 2016

A002720 Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column.

Original entry on oeis.org

1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114, 234662231, 3405357682, 53334454417, 896324308634, 16083557845279, 306827170866106, 6199668952527617, 132240988644215842, 2968971263911288999, 69974827707903049154, 1727194482044146637521, 44552237162692939114282
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the total number of increasing subsequences of all permutations of [1..n] (see Lifschitz and Pittel). - N. J. A. Sloane, May 06 2012
a(n) = A000142 + A001563 + A001809 + A001810 + A001811 + A001812 + ... these sequences respectively give the number of increasing subsequences of length i for i=0,1,2,... in all permutations of [1..n]. - Geoffrey Critzer, Jan 17 2013
a(n) is also the number of matchings in the complete bipartite graph K(n,n). - Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
a(n) is also the number of 12-avoiding signed permutations in B_n (see Simion ref).
a(n) is also the order of the symmetric inverse semigroup (monoid) I_n. - A. Umar, Sep 09 2008
EXP transform of A001048(n) = n! + (n-1)!. - Franklin T. Adams-Watters, Dec 28 2006
From Peter Luschny, Mar 27 2011: (Start)
Let B_{n}(x) = Sum_{j>=0} exp(j!/(j-n)!*x-1)/j!; then a(n) = 2! [x^2] Taylor(B_{n}(x)), where [x^2] denotes the coefficient of x^2 in the Taylor series for B_{n}(x).
a(n) is column 2 of the square array representation of A090210. (End)
a(n) is the Hosoya index of the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Jul 09 2011
a(n) is also number of non-attacking placements of k rooks on an n X n board, summed over all k >= 0. - Vaclav Kotesovec, Aug 28 2012
Also the number of vertex covers and independent vertex sets in the n X n rook graph. - Eric W. Weisstein, Jan 04 2013
a(n) is the number of injective functions from subsets of [n] to [n] where [n]={1,2,...,n}. For a subset D of size k, there are n!/(n-k)! injective functions from D to [n]. Summing over all subsets, we obtain a(n) = Sum_{k=0..n} C(n,k)*n!/(n-k)! = Sum_{k=0..n} k!*C(n,k)^2. - Dennis P. Walsh, Nov 16 2015
Also the number of cliques in the n X n rook complement graph. - Eric W. Weisstein, Sep 14 2017
a(n)/n! is the expected value of the n-th term of Ulam's "history-dependent random sequence". See Kac (1989), Eq.(2). - N. J. A. Sloane, Nov 16 2019
a(2*n) is odd and a(2*n+1) is even for all n. More generally, for each positive integer k, a(n+k) == a(n) (mod k) for all n. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with period dividing k. Various divisibility properties of the sequence follow from this: for example, a(7*n+2) == 0 (mod 7), a(11*n+4) == 0 (mod 11), a(17*n+3) == 0 (mod 17) and a(19*n+4) == 0 (mod 19). - Peter Bala, Nov 07 2022
Conjecture: a(n)*k is the sum of the largest parts in all integer partitions containing their own first differences with n + 1 parts and least part k. - John Tyler Rascoe, Feb 28 2024

Examples

			G.f. = 1 + 2*x + 7*x^2 + 34*x^3 + 209*x^4 + 1546*x^5 + 13327*x^6 + 130922*x^7 + ... - _Michael Somos_, Jul 31 2018
		

References

  • J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995). [From A. Umar, Sep 09 2008]
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 356.

Crossrefs

Main diagonal of A088699. Column of A283500. Row sums of A144084.
Column k=1 of A289192.
Cf. A364673.

Programs

  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n), -1): n in [0..25]]; // G. C. Greubel, Aug 11 2022
    
  • Maple
    A002720 := proc(n) exp(-x)*n!*hypergeom([n+1], [1], x); simplify(subs(x=1, %)) end: seq(A002720(n), n=0..25); # Peter Luschny, Mar 30 2011
    A002720 := proc(n)
        option remember;
        if n <= 1 then
            n+1 ;
        else
            2*n*procname(n-1)-(n-1)^2*procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Mar 09 2017
  • Mathematica
    Table[n! LaguerreL[n, -1], {n, 0, 25}]
    Table[(-1)^n*HypergeometricU[-n, 1, -1], {n, 0, 25}] (* Jean-François Alcover, Jul 15 2015 *)
    RecurrenceTable[{(n+1)^2 a[n] - 2(n+2) a[n+1] + a[n+2]==0, a[1]==2, a[2]==7}, a, {n, 25}] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n) = sum(k=0, n, k!*binomial(n, k)^2 );
    
  • PARI
    a(n) = suminf ( k=0, binomial(n+k,n)/k! ) / ( exp(1)/n! ) /* Gottfried Helms, Nov 25 2006 */
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)} /* Paul D. Hanna, Nov 18 2011 */
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(m+1)*x+x*O(x^n))^2), n))} /* Paul D. Hanna, Nov 27 2012 */
    
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1/(1-x))*exp(x/(1-x)))) \\ Joerg Arndt, Aug 11 2022
    
  • Python
    from math import factorial, comb
    def A002720(n): return sum(factorial(k)*comb(n,k)**2 for k in range(n+1)) # Chai Wah Wu, Aug 31 2023
  • SageMath
    [factorial(n)*laguerre(n, -1) for n in (0..25)] # G. C. Greubel, Aug 11 2022
    

Formula

a(n) = Sum_{k=0..n} k!*C(n, k)^2.
E.g.f.: (1/(1-x))*exp(x/(1-x)). - Don Knuth, Jul 1995
D-finite with recurrence: a(n) = 2*n*a(n-1) - (n-1)^2*a(n-2).
a(n) = Sum_{k>=0} (k+n)! / ((k!)^2*exp(1)). - Robert G. Wilson v, May 02 2002 [corrected by Vaclav Kotesovec, Aug 28 2012]
a(n) = Sum_{m>=0} (-1)^m*A021009(n, m). - Philippe Deléham, Mar 10 2004
a(n) = Sum_{k=0..n} C(n, k)n!/k!. - Paul Barry, May 07 2004
a(n) = Sum_{k=0..n} P(n, k)*C(n, k); a(n) = Sum_{k=0..n} n!^2/(k!*(n-k)!^2). - Ross La Haye, Sep 20 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*Bell(k+1). - Vladeta Jovovic, Mar 18 2005
Define b(n) by b(0) = 1, b(n) = b(n-1) + (1/n) * Sum_{k=0..n-1} b(k). Then b(n) = a(n)/n!. - Franklin T. Adams-Watters, Sep 05 2005
Asymptotically, a(n)/n! ~ (1/2)*Pi^(-1/2)*exp(-1/2 + 2*n^(1/2))/n^(1/4) and so a(n) ~ C*BesselI(0, 2*sqrt(n))*n! with C = exp(-1/2) = 0.6065306597126334236... - Alec Mihailovs, Sep 06 2005, establishing a conjecture of Franklin T. Adams-Watters
a(n) = (n!/e) * Sum_{k>=0} binomial(n+k,n)/k!. - Gottfried Helms, Nov 25 2006
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem): a(n) = Integral_{x=0..oo} x^n*BesselI(0,2*sqrt(x))*exp(-x)/exp(1) dx, n >= 0. - Karol A. Penson and G. H. E. Duchamp (gduchamp2(AT)free.fr), Jan 09 2007
a(n) = n! * LaguerreL[n, -1].
E.g.f.: exp(x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
From Peter Bala, Oct 11 2012: (Start)
Denominators in the sequence of convergents coming from Stieltjes's continued fraction for A073003, the Euler-Gompertz constant G := Integral_{x = 0..oo} 1/(1+x)*exp(-x) dx:
G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793. (End)
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^2. - Paul D. Hanna, Nov 27 2012
E.g.f.: exp(x/(1-x))/(1-x) = G(0)/(1-x) where G(k) = 1 + x/((2*k+1)*(1-x) - x*(1-x)*(2*k+1)/(x + (1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 28 2012
a(n) = Sum_{k=0..n} L(n,k)*(k+1); L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = n! * A160617(n)/A160618(n). - Alois P. Heinz, Jun 28 2017
0 = a(n)*(-24*a(n+2) +99*a(n+3) -78*a(n+4) +17*a(n+5) -a(n+6)) +a(n+1)*(-15*a(n+2) +84*a(n+3) -51*a(n+4) +6*a(n+5)) +a(n+2)*(-6*a(n+2) +34*a(n+3) -15*a(n+4)) +a(n+3)*(+10*a(n+3)) for all n>=0. - Michael Somos, Jul 31 2018
a(n) = Sum_{k=0..n} C(n,k)*k!*A000262(n-k). - Geoffrey Critzer, Jan 07 2023
a(n) = A000262(n+1) - n * A000262(n). - Werner Schulte, Mar 29 2024
a(n) = denominator of (1 + n/(1 + n/(1 + (n-1)/(1 + (n-1)/(1 + ... + 1/(1 + 1/(1))))))). See A000262 for the numerators. - Peter Bala, Feb 11 2025

Extensions

2nd description from R. H. Hardin, Nov 1997
3rd description from Wouter Meeussen, Jun 01 1998

A020556 Number of oriented multigraphs on n labeled arcs (without loops).

Original entry on oeis.org

1, 1, 7, 87, 1657, 43833, 1515903, 65766991, 3473600465, 218310229201, 16035686850327, 1356791248984295, 130660110400259849, 14177605780945123273, 1718558016836289502159, 230999008481288064430879, 34208659263890939390952225, 5549763869122023099520756513
Offset: 0

Views

Author

Gilbert Labelle (gilbert(AT)lacim.uqam.ca) and Simon Plouffe

Keywords

Comments

Generalized Bell numbers: a(n) = Sum_{k=2..2*n} A078739(n,k), n >= 1.
Let B_{m}(x) = Sum_{j>=0} exp(j!/(j-m)!*x-1)/j! then
a(n) = n! [x^n] taylor(B_{2}(x)), where [x^n] denotes the coefficient of x^n in the Taylor series for B_{2}(x). a(n) is row 2 of the square array representation of A090210. - Peter Luschny, Mar 27 2011
Also the number of set partitions of {1,2,...,2n+1} such that the block |n+1| is a part but no block |m| with m < n+1. - Peter Luschny, Apr 03 2011

Examples

			Example: For n = 2 the a(2) = 7 are the number of set partitions of 5 such that the block |3| is a part but no block |m| with m < 3: 3|1245, 3|4|125, 3|5|124, 3|12|45, 3|14|25, 3|15|24, 3|4|5|12. - _Peter Luschny_, Apr 05 2011
		

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • Maple
    A020556 := proc(n) local k;
    add((-1)^(n+k)*binomial(n,k)*combinat[bell](n+k),k=0..n) end:
    seq(A020556(n),n=0..17); # Peter Luschny, Mar 27 2011
    # Uses floating point arithmetic, increase working precision for large n.
    A020556 := proc(n) local r,s,i;
    if n=0 then 1 else r := [seq(3,i=1..n-1)]; s := [seq(1,i=1..n-1)];
    exp(-x)*2^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
    seq(A020556(n),n=0..15); # Peter Luschny, Mar 30 2011
    T := proc(n, k) option remember;
      if n = 1 then 1
    elif n = k then T(n-1,1) - T(n-1,n-1)
    else T(n-1,k) + T(n, k+1) fi end:
    A020556 := n -> T(2*n+1,n+1);
    seq(A020556(n), n = 0..99); # Peter Luschny, Apr 03 2011
  • Mathematica
    f[n_] := f[n] = Sum[(k + 2)!^n/((k + 2)!*(k!^n)*E), {k, 0, Infinity}]; Table[ f[n], {n, 1, 16}]
    (* Second program: *)
    a[n_] := Sum[(-1)^k*Binomial[n, k]*BellB[2n-k], {k, 0, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 11 2017, after Vladeta Jovovic *)
  • PARI
    a(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(k=0, n, (-1)^k*binomial(n,k)*polcoef(bell, 2*n-k))} \\ Andrew Howroyd, Jan 13 2020

Formula

a(n) = e*Sum_{k>=0} ((k+2)!^n/(k+2)!)*(k!^n), n>=1.
a(n) = (1/e)*Sum_{k>=2} (k*(k-1))^n/k!, n >= 1. a(0) := 1. (From eq.(26) with r=2 of the Schork reference.)
E.g.f.: (1/e)*(2 + Sum_{k>=2} ((exp(k*(k-1)*x))/k!)) (from top of p. 4656 of the Schork reference).
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*Bell(2*n-k). - Vladeta Jovovic, May 02 2004
a(n) = A095149(2n,n). - Alois P. Heinz, Dec 20 2018
a(n) = A106436(2n,n) = A182930(2n+1,n+1). - Alois P. Heinz, Jan 29 2019

Extensions

Edited by Robert G. Wilson v, Apr 30 2002

A071379 a(n) = (1/e) * Sum_{k>=0} ((k+4)!/k!)^(n-1)/k!.

Original entry on oeis.org

1, 1, 209, 163121, 326922081, 1346634725665, 9939316337679281, 119802044788535500753, 2205421644124274191535553, 58945667435045762187763602753, 2198513228897522394476415669503377, 110833342180980170285766876408530089329
Offset: 0

Views

Author

Karol A. Penson, May 22 2002

Keywords

Comments

This is a Dobinski-type summation formula.
Terms quickly become gigantic: a(15) = 9142140479823239889945170786704021785456107245847570873873. a(n) appears in the process of ordering the n-th power of a product of fourth power of boson creation and fourth power of boson annihilation operators.
From Peter Luschny, Mar 27 2011: (Start)
Let B_{m}(x) = Sum_{j>=0} (exp(j!/(j-m)!*x-1)/j!) then a(n) = n! [x^n] Taylor(B_{4}(x)), where [x^n] denotes the coefficient of x^k in the Taylor series for B_{4}(x).
a(n) is row 4 of the square array representation of A090210. (End)

Crossrefs

Cf. A000110, A020556 and A069223, when k+4 is replaced by k+1, k+2 or k+3 respectively.
Cf. A090210.

Programs

  • Maple
    A071379 := proc(n) local r,s,i;
    if n=0 then 1 else r := [seq(5,i=1..n-1)]; s := [seq(1,i=1..n-1)];
    exp(-x)*24^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
    seq(A071379(n),n=0..10); # Peter Luschny, Mar 30 2011
  • Mathematica
    a[n_] := Sum[FactorialPower[k, 4]^n/k!, {k, 4, Infinity}]/E; a[0] = 1; Array[a, 12, 0] (* Jean-François Alcover, Sep 01 2016 *)
  • PARI
    default(realprecision, 500); for(n=0, 20, print1(if(n==0, 1, round(exp(-1)*sum(k=0, 500, ((k+4)!/k!)^(n-1)/k!))), ", ")) \\ G. C. Greubel, May 15 2018

Formula

a(n) = (1/e)*Sum_{k>=4} fallfac(k, 4)^n / k!, n >= 1, with fallfac(n, m) := A008279(n, m) (falling factorials). (From eq.(26) with r=4 of the Schork reference.)
E.g.f. with a(0) := 1: (1/e)*(Sum_{k>=4} e^(fallfac(k, 4)*x)/k! + 8/3). From top of p. 4656 with r=4 of the Schork reference.

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 01 2016
If it is proved that A283153 and A071379 are the same, then the entries should be merged and A283153 recycled. - N. J. A. Sloane, Mar 06 2017

A069948 a(n) = 1/exp(1) * Sum_{k>=0} (k+n)!^2 / k!^3.

Original entry on oeis.org

1, 5, 87, 2971, 163121, 12962661, 1395857215, 194634226067, 33990369362241, 7247035915622821, 1848636684656077991, 555005864462114884875, 193458213840943964983537, 77399534126148191747554181, 35196002960227350045891984591, 18037244723394790042393195636291
Offset: 0

Views

Author

Robert G. Wilson v, May 02 2002

Keywords

Comments

From Peter Luschny, Mar 27 2011: (Start)
Let B_{n}(x) = sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) then a(n) = 3! [x^3] taylor(B_{n}(x)), where [x^3] denotes the coefficient of x^3 in the Taylor series for B_{n}(x).
a(n) is column 3 of the square array representation of A090210. (End)

Crossrefs

Programs

  • Maple
    A069948 := proc(n) exp(-x)*n!^2*hypergeom([n+1,n+1],[1,1],x);
    round(evalf(subs(x=1,%),99)) end:
    seq(A069948(n),n=0..13); # Peter Luschny, Mar 30 2011
    # second Maple program:
    a:= n-> sum((k+n)!^2/k!^3, k=0..infinity)/exp(1):
    seq(a(n), n=0..15);  # Alois P. Heinz, May 17 2018
  • Mathematica
    f[n_] := f[n] = Sum[(k + n)!^3/((k + n)!*(k!^3)*E), {k, 0, Infinity}]; Table[ f[n], {n, 0, 13}] (* or *)
    Table[n!^2*HypergeometricPFQ[{n + 1, n + 1}, {1, 1}, 1]/Exp[1], {n, 0, 13}] (* Robert G. Wilson v, Jan 11 2007 *)
  • PARI
    {default(realprecision, 200)}; for(n=0,30, print1(round(exp(-1)*(n!)^2*sum(k=0,500, binomial(n+k, k)^2/k!)), ", ")) \\ G. C. Greubel, May 17 2018

Formula

Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation: a(n)=int(x^n*2*BesselK(0,2*sqrt(x))*hypergeom([],[1,1],x)/exp(1), x=0..infinity), n=0,1... Special values of the hypergeometric function of type 2F2: a(n)=exp(-1)*GAMMA(n+1)^2*hypergeom([n+1, n+1], [1, 1], 1). - Karol A. Penson and G. H. E. Duchamp (gduchamp2(AT)free.fr), Jan 09 2007
Recurrence: (8*n-7)*a(n) = (24*n^3 + 3*n^2 - 26*n + 4)*a(n-1) - (n-1)^2*(24*n^3 - 85*n^2 + 66*n + 13)*a(n-2) + (n-1)^2*(8*n+1)*(n-2)^4*a(n-3). - Vaclav Kotesovec, Jul 30 2013
a(n) ~ n^(2*n+1/3)*exp(n^(1/3) + 3*n^(2/3) - 2*n - 2/3)/sqrt(3) * (1 + 41/(54*n^(1/3)) + 13769/(29160*n^(2/3))). - Vaclav Kotesovec, Jul 30 2013

Extensions

More terms from Robert G. Wilson v, Jan 11 2007

A090209 Generalized Bell numbers (from (5,5)-Stirling2 array A090216).

Original entry on oeis.org

1, 1, 1546, 12962661, 363303011071, 25571928251231076, 3789505947767235111051, 1049433111253356296672432821, 498382374325731085522315594481036, 380385281554629647028734545622539438171, 443499171330317702437047276255605780991365151
Offset: 0

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

Contribution from Peter Luschny, Mar 27 2011: (Start) Let B_{m}(x) = sum_{j>=0}(exp(j!/(j-m)!*x-1)/j!) then a(n) = n! [x^n] taylor(B_{5}(x)), where [x^n] denotes the coefficient of x^k in the Taylor series for B_{5}(x).
a(n) is row 5 of the square array representation of A090210. (End)

References

  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. (Generalized) Bell numbers from (m,m)-Stirling2 array: A000110 (m=1), A020556 (m=2), A069223 (m=3), A071379 (m=4). Triangle A090210.

Programs

  • Maple
    A071379 := proc(n) local r,s,i;
    if n=0 then 1 else r := [seq(6,i=1..n-1)]; s := [seq(1,i=1..n-1)];
    exp(-x)*5!^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
    seq(A071379(n),n=0..8); # Peter Luschny, Mar 30 2011
  • Mathematica
    fallfac[n_, k_] := Pochhammer[n-k+1, k]; a[n_, k_] := (((-1)^k)/k!)*Sum[((-1)^p)*Binomial[k, p]*fallfac[p, 5]^n, {p, 5, k}]; a[0] = 1; a[n_] := Sum[a[n, k], {k, 5, 5*n}];  Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Mar 05 2014 *)

Formula

a(n) = Sum_{k=5..5*n} A090216(n, k), n>=1. a(0) := 1.
a(n) = Sum_{k >=5} (fallfac(k, 5)^n)/k!/exp(1), n>=1, a(0) := 1. From eq.(26) with r=5 of the Schork reference.
E.g.f. with a(0) := 1: (sum((exp(fallfac(k, 5)*x))/k!, k=5..infinity)+ A000522(4)/4!)/exp(1). From the top of p. 4656 with r=5 of the Schork reference.

Extensions

If it is proved that A283154 and A090209 are the same, then the entries should be merged and A283154 recycled. - N. J. A. Sloane, Mar 06 2017

A182924 Generalized vertical Bell numbers of order 4.

Original entry on oeis.org

1, 52, 43833, 149670844, 1346634725665, 25571928251231076, 893591647147188285577, 52327970757667659912764908, 4796836032234830356783078467969, 653510798275634770675047022800897940, 127014654376520087360456517007106313763801
Offset: 0

Views

Author

Peter Luschny, Mar 28 2011

Keywords

Comments

The name "generalized 'vertical' Bell numbers" is used to distinguish them from the generalized (horizontal) Bell numbers with reference to the square array representation of the generalized Bell numbers as given in A090210. a(n) is column 5 in this representation. The order is the parameter M in Penson et al., p. 6, eq. 29.
Apparently a(n) = A157280(n+1) for 0 <= n <= 8. - Georg Fischer, Oct 24 2018 (and true considering the hypergeometric comment in A157280, R. J. Mathar, Apr 23 2024).

Crossrefs

Programs

  • Maple
    A182924 := proc(n) exp(-x)*GAMMA(n+1)^4*hypergeom([n+1,n+1,n+1,n+1],[1,1,1,1],x): simplify(subs(x=1, %)) end;
    seq(A182924(i),i=0..10);
  • Mathematica
    fallfac[n_, k_] := Pochhammer[n-k+1, k]; f[m_][n_, k_] := (-1)^k/k!* Sum[(-1)^p*Binomial[k, p]*fallfac[p, m]^n, {p, m, k}]; a[n_] := Sum[f[n][5, k], {k, n, 5*n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Sep 05 2012 *)

Formula

a(n) = exp(-1)*Gamma(n+1)^4*[4F4]([n+1,n+1,n+1,n+1], [1,1,1,1] | 1); here [4F4] is the generalized hypergeometric function of type 4F4.
Let B_{n}(x) = sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) then a(n) = 5! [x^5] taylor(B_{n}(x)), where [x^5] denotes the coefficient of x^5 in the Taylor series for B_{n}(x).

A182933 Generalized Bell numbers based on the rising factorial powers; square array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 5, 27, 13, 1, 1, 15, 409, 778, 73, 1, 1, 52, 9089, 104149, 37553, 501, 1, 1, 203, 272947, 25053583, 57184313, 2688546, 4051, 1, 1, 877, 10515147, 9566642254, 192052025697, 56410245661, 265141267, 37633, 1
Offset: 0

Views

Author

Peter Luschny, Mar 29 2011

Keywords

Comments

These numbers are related to the generalized Bell numbers based on the falling factorial powers (A090210).
The square array starts for n>=0, k>=0:
n\k=0,1,.. A000012,A000262,A182934,...
0: A000012: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1: A000110: 1, 1, 2, 5, 15, 52, 203, 877, 4140, ...
2: A094577: 1, 3, 27, 409, 9089, 272947, 10515147, ...
3: A182932: 1, 13, 778, 104149, 25053583, 9566642254, ...
4: : 1, 73, 37553, 57184313, 192052025697, ...
5: : 1, 501, 2688546, 56410245661, ...
6: .... : 1, 4051, 265141267, 89501806774945, ...

Crossrefs

Programs

  • Maple
    A182933_AsSquareArray := proc(n,k) local r,s,i;
    r := [seq(n+1,i=1..k)]; s := [seq(1,i=1..k-1),2];
    exp(-x)*n!^k*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) end:
    seq(lprint(seq(A182933_AsSquareArray(n,k),k=0..6)),n=0..6);
  • Mathematica
    a[n_, k_] := Exp[-1]*n!^k*HypergeometricPFQ[ Table[n+1, {k}], Append[ Table[1, {k-1}], 2], 1.]; Table[ a[n-k, k] // Round , {n, 0, 8}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)

Formula

Let r_k = [n+1,...,n+1] (k occurrences of n+1), s_k = [1,...,1,2] (k-1 occurrences of 1) and F_k the generalized hypergeometric function of type k_F_k, then a(n,k) = exp(-1)*n!^k*F_k(r_k, s_k | 1).
Let B_{n}(x) = sum_{j>=0}(exp((j+n-1)!/(j-1)!*x-1)/j!) then a(n,k) = k! [x^k] series(B_{n}(x)), where [x^k] denotes the coefficient of x^k in the Taylor series for B_{n}(x).

A070227 a(n) = Sum_{k>=0} (k+n)!^n/((k+n)!*(k!^n)*exp(1)).

Original entry on oeis.org

1, 1, 7, 2971, 326922081, 25571928251231076, 3104750712141723393459934903, 1106411839720559249283387766293758050197271, 1982711933502621451047063899803427489760228712955842831202561
Offset: 0

Views

Author

Benoit Cloitre, May 07 2002

Keywords

Crossrefs

Cf. A090210.

Programs

  • Mathematica
    a[n_] := Exp[-1] * Sum[(k + n)!^n/((k + n)!*(k!^n)), {k, 0, Infinity}]; Array[a, 10, 0] (* Amiram Eldar, May 01 2025 *)
    Table[Sum[(-1)^(k+m) * m!^(n-1) / ((k-m)!*(m-n)!^n), {k, n, n^2}, {m, n, k}], {n, 0, 10}] (* Vaclav Kotesovec, May 01 2025 *)
  • PARI
    \\ precision 1000 digits :
    for(n=1,9,print1(round(sum(k=0,200,(k+n)!^n/((k+n)!*(k!^n)*exp(1)))),","))

Formula

a(n) = A090210(n,n). - Alois P. Heinz, Aug 01 2016
a(n) = Sum_{k=n..n^2} Sum_{m=n..k} (-1)^(k+m) * m!^(n-1) / ((k-m)! * (m-n)!^n). - Vaclav Kotesovec, May 01 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 01 2016

A182925 Generalized vertical Bell numbers of order 3.

Original entry on oeis.org

1, 15, 1657, 513559, 326922081, 363303011071, 637056434385865, 1644720885001919607, 5943555582476814384769, 28924444943026683877502191, 183866199607767992029159792281, 1489437787210535537087417039489815
Offset: 0

Views

Author

Peter Luschny, Mar 28 2011

Keywords

Comments

The name "generalized 'vertical' Bell numbers" is used to distinguish them from the generalized (horizontal) Bell numbers with reference to the square array representation of the generalized Bell numbers as given in A090210. a(n) is column 4 in this representation. The order is the parameter M in Penson et al., p. 6, eq. 29.

Crossrefs

Programs

  • Maple
    A182925 := proc(n) exp(-x)*GAMMA(n+1)^3*hypergeom([n+1,n+1,n+1],[1,1,1],x);
    round(evalf(subs(x=1,%),64)) end; seq(A182925(i),i=0..11);
  • Mathematica
    u = 1.`64; a[n_] := n!^3*HypergeometricPFQ[{n+u, n+u, n+u}, {u, u, u}, u]/E // Round; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Nov 22 2012, after Maple *)

Formula

a(n) = exp(-1)*Gamma(n+1)^3*[3F3]([n+1, n+1, n+1], [1, 1, 1] | 1); here [3F3] is the generalized hypergeometric function of type 3F3.
Let B_{n}(x) = Sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) then a(n) = 4! [x^4] taylor(B_{n}(x)), where [x^4] denotes the coefficient of x^4 in the Taylor series for B_{n}(x).
Showing 1-10 of 10 results.