A090210
Triangle of certain generalized Bell numbers.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 7, 1, 1, 15, 87, 34, 1, 1, 52, 1657, 2971, 209, 1, 1, 203, 43833, 513559, 163121, 1546, 1, 1, 877, 1515903, 149670844, 326922081, 12962661, 13327, 1, 1, 4140, 65766991, 66653198353, 1346634725665, 363303011071, 1395857215, 130922, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 7, 1, 1;
15, 87, 34, 1, 1;
52, 1657, 2971, 209, 1, 1;
203, 43833, 513559, 163121, 1546, 1, 1;
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
-
A090210_AsSquareArray := proc(n,k) local r,s,i;
if k=0 then 1 else r := [seq(n+1,i=1..k-1)]; s := [seq(1,i=1..k-1)];
exp(-x)*n!^(k-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
seq(lprint(seq(A090210_AsSquareArray(n,k),k=0..6)),n=0..6);
# Peter Luschny, Mar 30 2011
-
t[n_, k_] := t[n, k] = Sum[(n+j)!^(k-1)/(j!^k*E), {j, 0, Infinity}]; t[_, 0] = 1;
Flatten[ Table[ t[n-k+1, k], {n, 0, 8}, {k, n, 0, -1}]][[1 ;; 43]] (* Jean-François Alcover, Jun 17 2011 *)
A090214
Generalized Stirling2 array S_{4,4}(n,k).
Original entry on oeis.org
1, 24, 96, 72, 16, 1, 576, 13824, 50688, 59904, 30024, 7200, 856, 48, 1, 13824, 1714176, 21606912, 76317696, 110160576, 78451200, 30645504, 6976512, 953424, 78400, 3760, 96, 1, 331776, 207028224, 8190885888, 74684104704, 253100173824
Offset: 1
Table begins
n\k| 4 5 6 7 8 9 10 11 12
= = = = = = = = = = = = = = = = = = = = = = = = = = = = =
1 | 1
2 | 24 96 72 16 1
3 | 576 13824 50688 59904 30024 7200 856 48 1
...
- Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 71, flattened)
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Codara, O. M. D’Antona, and P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv:1308.1700v1 [cs.DM], 2013.
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- Wolfdieter Lang, First 4 rows.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
S_{1, 1} =
A008277, S_{2, 1} =
A008297 (ignoring signs), S_{3, 1} =
A035342, S_{2, 2} =
A078739, S_{3, 2} =
A078740, S_{3, 3} =
A078741.
-
T:= (n,k) -> (-1)^k/k!*add((-1)^p*binomial(k,p)*(p*(p-1)*(p-2)*(p-3))^n,p=4..k):
seq(seq(T(n,k),k=4..4*n),n=1..10); # Robert Israel, Jan 28 2016
-
a[n_, k_] := (((-1)^k)/k!)*Sum[((-1)^p)*Binomial[k, p]*FactorialPower[p, 4]^n, {p, 4, k}]; Table[a[n, k], {n, 1, 5}, {k, 4, 4*n}] // Flatten (* Jean-François Alcover, Sep 05 2012, updated Jan 28 2016 *)
A090209
Generalized Bell numbers (from (5,5)-Stirling2 array A090216).
Original entry on oeis.org
1, 1, 1546, 12962661, 363303011071, 25571928251231076, 3789505947767235111051, 1049433111253356296672432821, 498382374325731085522315594481036, 380385281554629647028734545622539438171, 443499171330317702437047276255605780991365151
Offset: 0
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
- G. C. Greubel, Table of n, a(n) for n = 0..115
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem., arXiv:quant-ph/0402027, Phys. Lett. A 309 (3-4) (2003) 198-205
- K. A. Penson, P. Blasiak, A. Horzela, A. I. Solomon and G. H. E. Duchamp, Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. 50, 083512 (2009).
-
A071379 := proc(n) local r,s,i;
if n=0 then 1 else r := [seq(6,i=1..n-1)]; s := [seq(1,i=1..n-1)];
exp(-x)*5!^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
seq(A071379(n),n=0..8); # Peter Luschny, Mar 30 2011
-
fallfac[n_, k_] := Pochhammer[n-k+1, k]; a[n_, k_] := (((-1)^k)/k!)*Sum[((-1)^p)*Binomial[k, p]*fallfac[p, 5]^n, {p, 5, k}]; a[0] = 1; a[n_] := Sum[a[n, k], {k, 5, 5*n}]; Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Mar 05 2014 *)
A182933
Generalized Bell numbers based on the rising factorial powers; square array read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 5, 27, 13, 1, 1, 15, 409, 778, 73, 1, 1, 52, 9089, 104149, 37553, 501, 1, 1, 203, 272947, 25053583, 57184313, 2688546, 4051, 1, 1, 877, 10515147, 9566642254, 192052025697, 56410245661, 265141267, 37633, 1
Offset: 0
-
A182933_AsSquareArray := proc(n,k) local r,s,i;
r := [seq(n+1,i=1..k)]; s := [seq(1,i=1..k-1),2];
exp(-x)*n!^k*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) end:
seq(lprint(seq(A182933_AsSquareArray(n,k),k=0..6)),n=0..6);
-
a[n_, k_] := Exp[-1]*n!^k*HypergeometricPFQ[ Table[n+1, {k}], Append[ Table[1, {k-1}], 2], 1.]; Table[ a[n-k, k] // Round , {n, 0, 8}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
A283153
Number of set partitions of unique elements from an n X 4 matrix where elements from the same row may not be in the same partition.
Original entry on oeis.org
1, 209, 163121, 326922081, 1346634725665, 9939316337679281, 119802044788535500753, 2205421644124274191535553, 58945667435045762187763602753, 2198513228897522394476415669503377, 110833342180980170285766876408530089329, 7356710448423295420590529054176924329802529, 628972339934967292421997567343442748145219556449
Offset: 1
- Indranil Ghosh, Table of n, a(n) for n = 1..50
- M. Riedel, Set partitions of unique elements from an n-by-m matrix where elements from the same row may not be in the same partition
- Marko Riedel, Maple code for generalized Bell numbers, A000110, A020556, A069223, A283153, A283154, A283155, optimized version
-
Table[(4!^n) * Sum[Binomial[p,4]^n/p! * Sum[(-1)^k/k!,{k,0,4n-p}],{p,1,4n}],{n,1,50}] (* Indranil Ghosh, Mar 04 2017 *)
-
a(n) = (4!^n) * sum(p=1, 4*n, binomial(p,4)^n/p! * sum(k=0, 4*n-p, (-1)^k/k!)); \\ Indranil Ghosh, Mar 04 2017
A157280
a(n) arises in the normal ordering of n-th power of the operator (d/dx)(x(d/dx))^4.
Original entry on oeis.org
1, 52, 43833, 149670844, 1346634725665, 25571928251231076, 893591647147188285577, 52327970757667659912764908, 4796836032234830356783078467969
Offset: 1
-
nMax = 8; kMax = 50; seq0 = {}; seq = {1}; While[seq != seq0, seq0 = seq; seq = (1/E Sum[HypergeometricPFQ[{k+1, k+1, k+1, k+1}, {1, 1, 1, 1}, x]/k!, {k, 0, kMax}] + O[x]^(nMax+1) // CoefficientList[#, x]&) Range[0, nMax]!^5 // Round; kMax += 10; Print[kMax]]; A157280 = seq (* Jean-François Alcover, Nov 07 2016 *)
A090213
Alternating row sums of array A090214 ((4,4)-Stirling2).
Original entry on oeis.org
1, -15, 1169, -154079, -148969375, 778633335441, -4003896394897551, 27901641934428560705, -268555885416357907647039, 3460225909437698652973995569, -56404253763542830420650221273263, 1050004356721541004548911018674177377
Offset: 1
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
-
a[n_] := Sum[(-1)^k FactorialPower[k, 4]^n/k!, {k, 2, Infinity}]*E; Array[a, 12] (* Jean-François Alcover, Sep 01 2016 *)
Showing 1-7 of 7 results.
Comments