A090221
Array used for numerators of g.f.s for column sequences of array A090214 ((4,4)-Stirling2).
Original entry on oeis.org
1, 96, 72, 14400, 16, 38400, 3456000, 1, 27000, 22104000, 1270080000, 7200, 34905600, 16111872000, 682795008000, 856, 21154176, 48248363520, 15279164006400, 516193026048000, 48, 6064128, 54644474880, 78083415244800
Offset: 4
[1]; [96]; [72,14400]; [16,38400,3456000]; [1,27000,22104000,1270080000]; ...
G(5,x)/x^2 = 96/((1-4!*x)*(1-5*4*3*2*x)). kmax(5)=0, hence P(5,x)=a(5,0)=96; x^2 from x^ceiling(5/4).
A090213
Alternating row sums of array A090214 ((4,4)-Stirling2).
Original entry on oeis.org
1, -15, 1169, -154079, -148969375, 778633335441, -4003896394897551, 27901641934428560705, -268555885416357907647039, 3460225909437698652973995569, -56404253763542830420650221273263, 1050004356721541004548911018674177377
Offset: 1
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
-
a[n_] := Sum[(-1)^k FactorialPower[k, 4]^n/k!, {k, 2, Infinity}]*E; Array[a, 12] (* Jean-François Alcover, Sep 01 2016 *)
A091037
Second column (k=5) of array A090214 ((4,4)-Stirling2) divided by 4*4!=96.
Original entry on oeis.org
1, 144, 17856, 2156544, 259117056, 31102009344, 3732432224256, 447896453382144, 53747684481171456, 6449724779548114944, 773967036949154758656, 92876045955579714207744
Offset: 2
Cf.
A091038 (second column of (5, 5)-Stirling2 array divided by 600).
A091553
Third column (k=6) sequence of array A090214 ((4,4)-Stirling2) divided by 72.
Original entry on oeis.org
1, 704, 300096, 113762304, 41644855296, 15075073327104, 5436979231850496, 1958506906364411904, 705205813266345885696, 253891292037560301256704, 91402929045514567230160896, 32905302125838589613523861504
Offset: 0
Cf.
A089518 (third column of array (3, 3)-Stirling2 divided by 9).
A078739
Triangle of generalized Stirling numbers S_{2,2}(n,k) read by rows (n>=1, 2<=k<=2n).
Original entry on oeis.org
1, 2, 4, 1, 4, 32, 38, 12, 1, 8, 208, 652, 576, 188, 24, 1, 16, 1280, 9080, 16944, 12052, 3840, 580, 40, 1, 32, 7744, 116656, 412800, 540080, 322848, 98292, 16000, 1390, 60, 1, 64, 46592, 1446368, 9196992, 20447056, 20453376, 10564304, 3047520, 511392, 50400
Offset: 1
From _Peter Bala_, Aug 15 2013: (Start)
The table begins
n\k | 2 3 4 5 6 7 8
= = = = = = = = = = = = = = = = = =
1 | 1
2 | 2 4 1
3 | 4 32 38 12 1
4 | 8 208 652 576 188 24 1
...
Graph coloring interpretation of T(2,3) = 4: The graph 2K_2 is 2 copies of K_2, the complete graph on 2 vertices:
o---o o---o
a b c d
The four 3-colorings of 2K_2 are ac|b|d, ad|b|c, bc|a|d and bd|a|c. (End)
- P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- Steve Butler, Fan Chung, Jay Cummings, R. L. Graham, Juggling card sequences, arXiv:1504.01426 [math.CO], 2015.
- Leonard Carlitz, On Arrays of Numbers, Am. J. Math., 54,4 (1932) 739-752. [Eqs. (3) and (4) with lambda = 0, mu = 2, a_{n,k-1} = a(n, k).- _Wolfdieter Lang_, Jan 30 2020 ]
- P. Codara, O. M. D’Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers arXiv:1308.1700v1 [cs.DM]
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil'daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- S.-M. Ma, T. Mansour, M. Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv preprint arXiv:1308.0169 [math.CO], 2013.
- Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
Row sums give
A020556. Triangle S_{1, 1} =
A008277, S_{2, 1} =
A008297 (ignoring signs), S_{3, 1} =
A035342, S_{3, 2} =
A078740, S_{3, 3} =
A078741.
A090214 (S_{4,4}).
Cf.
A071951 (Legendre-Stirling triangle).
-
# Note that the function implements the full triangle because it can be
# much better reused and referenced in this form.
A078739 := proc(n,k) local r;
add((-1)^(n-r)*binomial(n,r)*combinat[stirling2](n+r,k),r=0..n) end:
# Displays the truncated triangle from the definition:
seq(print(seq(A078739(n,k),k=2..2*n)),n=1..6); # Peter Luschny, Mar 25 2011
-
t[n_, k_] := Sum[(-1)^(n-r)*Binomial[n, r]*StirlingS2[n+r, k], {r, 0, n}]; Table[t[n, k], {n, 1, 7}, {k, 2, 2*n}] // Flatten (* Jean-François Alcover, Apr 11 2013, after Peter Luschny *)
A078741
Triangle of generalized Stirling numbers S_{3,3}(n,k) read by rows (n>=1, 3<=k<=3n).
Original entry on oeis.org
1, 6, 18, 9, 1, 36, 540, 1242, 882, 243, 27, 1, 216, 13608, 94284, 186876, 149580, 56808, 11025, 1107, 54, 1, 1296, 330480, 6148872, 28245672, 49658508, 41392620, 18428400, 4691412, 706833, 63375, 3285, 90, 1, 7776, 7954848, 380841264, 3762380016, 13062960720
Offset: 1
From _Peter Bala_, Aug 15 2013: (Start)
The table begins
n\k | 3 4 5 6 7 8 9 10 11 12
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
1 | 1
2 | 6 18 9 1
3 | 36 540 1242 882 243 27 1
4 | 216 13608 94284 186876 149580 56808 11025 1107 54 1
...
Graph coloring interpretation of T(2,3) = 6:
The graph 2K_3 is 2 copies of K_3, the complete graph on 3 vertices:
o b o e
/ \ / \
o---o o---o
a c d f
The six 3-colorings of 2K_3 are ad|be|cf, ad|bf|ce, ae|bd|cf, ae|bf|cd, af|bd|ce, and af|be|cd. (End)
- P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027,2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Codara, O. M. D’Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers arXiv:1308.1700v1 [cs.DM]
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- W. Lang, First 6 rows.
-
a[n_, k_] := (-1)^k*Sum[(-1)^p*((p-2)*(p-1)*p)^n*Binomial[k, p], {p, 3, k}]/k!; Table[a[n, k], {n, 1, 6}, {k, 3, 3*n}] // Flatten (* Jean-François Alcover, Dec 04 2013 *)
A090215
A generalization of triangles A071951 (Legendre-Stirling) and A089504.
Original entry on oeis.org
1, 24, 1, 576, 144, 1, 13824, 17856, 504, 1, 331776, 2156544, 199296, 1344, 1, 7962624, 259117056, 73903104, 1328256, 3024, 1, 191102976, 31102009344, 26864234496, 1189638144, 6408576, 6048, 1, 4586471424, 3732432224256, 9702226427904, 1026160275456, 11956045824, 24697728, 11088, 1
Offset: 1
[1]; [24,1]; [576,144,1]; [13824,17856,504,1]; ...
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694 [math.CO], 2013.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
- Wolfdieter Lang, First 8 rows.
The column sequences (without leading zeros) are
A009968 (powers of 24), etc.
-
max = 10; f[m_] := 1/Product[1-FactorialPower[r+3, 4]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max-m+1), x]; a[n_, m_] := col[m][[n-m+1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)
More terms coming from a-file added by
Michel Marcus, Feb 08 2023
A216379
Triangle of generalized Stirling numbers S_{n,n}(5,k) read by rows (n>=0, n<=k<=5n) the sum of which is A182924.
Original entry on oeis.org
1, 1, 15, 25, 10, 1, 16, 1280, 9080, 16944, 12052, 3840, 580, 40, 1, 1296, 330480, 6148872, 28245672, 49658508, 41392620, 18428400, 4691412, 706833, 63375, 3285, 90, 1, 331776, 207028224, 8190885888, 74684104704, 253100173824, 405044582400, 351783415296, 181005401088, 58436640576, 12288192000, 1721191680, 162115584, 10228144, 423360, 10960, 160, 1
Offset: 0
{1},
{1,15,25,10,1},
{16,1280,9080,16944,12052,3840,580,40,1}
...
Second row (n=1) is 5th row of
A008277 (Stirling numbers S2).
Third row is 5th row of
A078739 (Generalized Stirling numbers S_{2,2}).
Fourth row is 5th row of
A078741 (Generalized Stirling numbers S_{3,3}).
Fifth row is 5th row of
A090214 (Generalized Stirling numbers S_{4,4}).
-
f[m_][n_, k_] := (-1)^k/k!*Sum[(-1)^p*Binomial[k, p]*FactorialPower[p, m]^n, {p, m, k}]; Table[f[n][5, k],{n,0,4}, {k, n, 5*n}]//Flatten
Showing 1-8 of 8 results.
Comments