A089515
Triangle of signed numbers used for the computation of the column sequences of triangle A090215.
Original entry on oeis.org
1, -1, 5, 1, -35, 90, -3, 595, -6885, 12005, 143, -150535, 6175845, -39484445, 52245760, -58201, 316465625, -42458934375, 772604284375, -3322503800000, 3547818864576, 216931, -6012846875, 2544269990625, -120371747505625, 1294115230100000, -4145626343257056, 3713894747640000
Offset: 1
Triangle begins:
1;
-1, 5;
1, -35, 90;
-3, 595,-6885, 12005;
...
A090215(2+3,3) = 199296 = (1*(4*3*2*1)^2 - 35*(5*4*3*2)^2 + 90*(6*5*4*3)^2)/56.
a(3,2)= -35 = 56*(-1)*((5*4*3*2)^2)/((5*4*3*2-4*3*2*1)*(6*5*4*3-5*4*3*2)).
A089516
Denominators used in A089515 to compute the column sequences of triangle A090215.
Original entry on oeis.org
1, 4, 56, 5712, 18786768, 955776822000, 744550144338000, 187882017072683934000, 114232266380191831872000, 1559289924571192031300084690688000
Offset: 1
A090214
Generalized Stirling2 array S_{4,4}(n,k).
Original entry on oeis.org
1, 24, 96, 72, 16, 1, 576, 13824, 50688, 59904, 30024, 7200, 856, 48, 1, 13824, 1714176, 21606912, 76317696, 110160576, 78451200, 30645504, 6976512, 953424, 78400, 3760, 96, 1, 331776, 207028224, 8190885888, 74684104704, 253100173824
Offset: 1
Table begins
n\k| 4 5 6 7 8 9 10 11 12
= = = = = = = = = = = = = = = = = = = = = = = = = = = = =
1 | 1
2 | 24 96 72 16 1
3 | 576 13824 50688 59904 30024 7200 856 48 1
...
- Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 71, flattened)
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Codara, O. M. D’Antona, and P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv:1308.1700v1 [cs.DM], 2013.
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- Wolfdieter Lang, First 4 rows.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
S_{1, 1} =
A008277, S_{2, 1} =
A008297 (ignoring signs), S_{3, 1} =
A035342, S_{2, 2} =
A078739, S_{3, 2} =
A078740, S_{3, 3} =
A078741.
-
T:= (n,k) -> (-1)^k/k!*add((-1)^p*binomial(k,p)*(p*(p-1)*(p-2)*(p-3))^n,p=4..k):
seq(seq(T(n,k),k=4..4*n),n=1..10); # Robert Israel, Jan 28 2016
-
a[n_, k_] := (((-1)^k)/k!)*Sum[((-1)^p)*Binomial[k, p]*FactorialPower[p, 4]^n, {p, 4, k}]; Table[a[n, k], {n, 1, 5}, {k, 4, 4*n}] // Flatten (* Jean-François Alcover, Sep 05 2012, updated Jan 28 2016 *)
A090217
A generalization of triangle A071951 (Legendre-Stirling).
Original entry on oeis.org
1, 120, 1, 14400, 840, 1, 1728000, 619200, 3360, 1, 207360000, 447552000, 9086400, 10080, 1, 24883200000, 322444800000, 23345280000, 76824000, 25200, 1, 2985984000000, 232185139200000, 59152550400000, 539602560000, 457848000
Offset: 1
Triangle starts:
[1];
[120,1];
[14400,840,1];
[1728000,619200,3360,1];
...
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694 [math.CO], 2013.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
- W. Lang, First 5 rows.
The column sequences (without leading zeros) are powers of 120, etc.
-
max = 10; f[m_] := 1/Product[1 - FactorialPower[r + 4, 5]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max - m + 1), x]; a[n_, m_] := col[m][[n - m + 1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 02 2016 *)
Showing 1-4 of 4 results.
Comments