A089516
Denominators used in A089515 to compute the column sequences of triangle A090215.
Original entry on oeis.org
1, 4, 56, 5712, 18786768, 955776822000, 744550144338000, 187882017072683934000, 114232266380191831872000, 1559289924571192031300084690688000
Offset: 1
A090215
A generalization of triangles A071951 (Legendre-Stirling) and A089504.
Original entry on oeis.org
1, 24, 1, 576, 144, 1, 13824, 17856, 504, 1, 331776, 2156544, 199296, 1344, 1, 7962624, 259117056, 73903104, 1328256, 3024, 1, 191102976, 31102009344, 26864234496, 1189638144, 6408576, 6048, 1, 4586471424, 3732432224256, 9702226427904, 1026160275456, 11956045824, 24697728, 11088, 1
Offset: 1
[1]; [24,1]; [576,144,1]; [13824,17856,504,1]; ...
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694 [math.CO], 2013.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
- Wolfdieter Lang, First 8 rows.
The column sequences (without leading zeros) are
A009968 (powers of 24), etc.
-
max = 10; f[m_] := 1/Product[1-FactorialPower[r+3, 4]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max-m+1), x]; a[n_, m_] := col[m][[n-m+1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)
More terms coming from a-file added by
Michel Marcus, Feb 08 2023
Showing 1-2 of 2 results.
Comments