A090219
Signed triangle used to compute column sequences of array A078741 ((3,3)-Stirling2).
Original entry on oeis.org
1, -1, 4, 1, -8, 10, -1, 12, -30, 20, 1, -64, 600, -1600, 1225, -1, 80, -1000, 4000, -6125, 3136, 1, -96, 1500, -8000, 18375, -18816, 7056, -1, 448, -21000, 280000, -1500625, 3687936, -4148928, 1728000, 1, -512, 28000, -448000, 3001250, -9834496, 16595712, -13824000, 4492125, -1
Offset: 3
The third (k=5) column sequence of array A078741 is A078741(n+3,5)=c(5; n)= b(3)*(1*(3*2*1)^n -8*(4*3*2)^n +10*(5*4*3)^n), with b(3)= N(3)/A090220(3)=3/1=3, n>=0. This is 9*A089518.
The fifth (k=7) column sequence of array A078741 is A078741(n+3,7)=c(7; n)= b(5)*(1*(3*2*1)^n -64*(4*3*2)^n +600*(5*4*3)^n -1600*(6*5*4)^n +1225*(7*6*5)^n), with b(5)= N(5)/A090220(5)=3/2, n>=0. This is the sequence [243, 149580, 49658508, 13062960720,... ] which has a factor of 27.
Triangle begins:
[1];
[-1,4];
[1,-8,10];
[-1,12,-30,20];
[1,-64,600,-1600,1225];
...
Companion sequence
A090220 for denominators D(m).
A089507
Second column of triangle A089504 and second column of array A078741 divided by 18.
Original entry on oeis.org
1, 30, 756, 18360, 441936, 10614240, 254788416, 6115201920, 146766525696, 3522406694400, 84537821131776, 2028908069959680, 48693795855814656, 1168651113600245760, 28047626804770062336, 673143043784666480640
Offset: 0
-
[6^n*(4^(n+1)-1)/3: n in [0..15]]; // Vincenzo Librandi, Oct 18 2017
-
CoefficientList[Series[1/((1-6x)(1-24x)),{x,0,20}],x] (* or *) LinearRecurrence[{30,-144},{1,30},20] (* Harvey P. Dale, Sep 25 2017 *)
A089517
Array used for numerators of g.f.s for column sequences of array A078741 ((3,3)-Stirling2).
Original entry on oeis.org
1, 18, 9, 432, 1, 672, 14400, 243, 47520, 648000, 27, 36396, 3790800, 38102400, 1, 9765, 5115888, 354715200, 2844979200, 1107, 2499552, 757646784, 39182330880, 263363788800, 54, 546453, 592216272, 123294623040, 5089348454400
Offset: 3
[1]; [18]; [9,423]; [1,672,14400]; [243,47520,648000]; ...
G(4,x)/(x^2) = 18/((1-3*2*1*x)*(1-4*3*2*x)). kmax(4)=0, hence P(4,x)=a(4,0)=18; x^2 from x^ceiling(4/3).
A089518
Third column (k=5) of array A078741 ((3,3)-Stirling2) divided by 9.
Original entry on oeis.org
1, 138, 10476, 683208, 42315696, 2570768928, 155010407616, 9318969502848, 559578466388736, 33585275183251968, 2015370124337581056, 120928294183739148288, 7255843732407562776576, 435354129897768445943808
Offset: 0
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
A089519
Fourth column (k=6) of array A078741 ((3,3)-Stirling2).
Original entry on oeis.org
1, 882, 186876, 28245672, 3762380016, 474431543712, 58322293189056, 7082435837377152, 854925864902090496, 102893307861680404992, 12365333752840511118336, 1484928368468173355231232
Offset: 0
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
A090212
Alternating row sums of array A078741 ((3,3)-Stirling2).
Original entry on oeis.org
1, -4, 73, -3241, 223546, -10884061, -5437091357, 4560715140638, -2741631069546683, 1315509914960956853, -135771066929217673256, -969783690708328561039261, 1943740128890758048004419957, -2140191682145533094039398047820
Offset: 1
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
-
a[n_] := -Sum[(-1)^k FactorialPower[k, 3]^n/k!, {k, 2, Infinity}]*E; Array[a, 14] (* Jean-François Alcover, Sep 01 2016 *)
A090220
Denominators used in A090219 to compute formula for column sequences of array A078741.
Original entry on oeis.org
1, 1, 1, 1, 2, 10, 20, 70, 560, 1680, 2800, 30800, 369600, 800800, 11211200, 168168000, 448448000, 7623616000, 137225088000, 434546112000, 8690922240000, 182509367040000, 669201012480000, 15391623287040000, 369398958888960000
Offset: 1
The fifth (k=7) column of A078741 needs in A090219 the factor b(5) := N(5)/a(5)= 3/2.
A078739
Triangle of generalized Stirling numbers S_{2,2}(n,k) read by rows (n>=1, 2<=k<=2n).
Original entry on oeis.org
1, 2, 4, 1, 4, 32, 38, 12, 1, 8, 208, 652, 576, 188, 24, 1, 16, 1280, 9080, 16944, 12052, 3840, 580, 40, 1, 32, 7744, 116656, 412800, 540080, 322848, 98292, 16000, 1390, 60, 1, 64, 46592, 1446368, 9196992, 20447056, 20453376, 10564304, 3047520, 511392, 50400
Offset: 1
From _Peter Bala_, Aug 15 2013: (Start)
The table begins
n\k | 2 3 4 5 6 7 8
= = = = = = = = = = = = = = = = = =
1 | 1
2 | 2 4 1
3 | 4 32 38 12 1
4 | 8 208 652 576 188 24 1
...
Graph coloring interpretation of T(2,3) = 4: The graph 2K_2 is 2 copies of K_2, the complete graph on 2 vertices:
o---o o---o
a b c d
The four 3-colorings of 2K_2 are ac|b|d, ad|b|c, bc|a|d and bd|a|c. (End)
- P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- Steve Butler, Fan Chung, Jay Cummings, R. L. Graham, Juggling card sequences, arXiv:1504.01426 [math.CO], 2015.
- Leonard Carlitz, On Arrays of Numbers, Am. J. Math., 54,4 (1932) 739-752. [Eqs. (3) and (4) with lambda = 0, mu = 2, a_{n,k-1} = a(n, k).- _Wolfdieter Lang_, Jan 30 2020 ]
- P. Codara, O. M. D’Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers arXiv:1308.1700v1 [cs.DM]
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil'daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- S.-M. Ma, T. Mansour, M. Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv preprint arXiv:1308.0169 [math.CO], 2013.
- Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
Row sums give
A020556. Triangle S_{1, 1} =
A008277, S_{2, 1} =
A008297 (ignoring signs), S_{3, 1} =
A035342, S_{3, 2} =
A078740, S_{3, 3} =
A078741.
A090214 (S_{4,4}).
Cf.
A071951 (Legendre-Stirling triangle).
-
# Note that the function implements the full triangle because it can be
# much better reused and referenced in this form.
A078739 := proc(n,k) local r;
add((-1)^(n-r)*binomial(n,r)*combinat[stirling2](n+r,k),r=0..n) end:
# Displays the truncated triangle from the definition:
seq(print(seq(A078739(n,k),k=2..2*n)),n=1..6); # Peter Luschny, Mar 25 2011
-
t[n_, k_] := Sum[(-1)^(n-r)*Binomial[n, r]*StirlingS2[n+r, k], {r, 0, n}]; Table[t[n, k], {n, 1, 7}, {k, 2, 2*n}] // Flatten (* Jean-François Alcover, Apr 11 2013, after Peter Luschny *)
A069223
Generalized Bell numbers: row 3 of A090210.
Original entry on oeis.org
1, 1, 34, 2971, 513559, 149670844, 66653198353, 42429389528215, 36788942253042556, 41888564490333642283, 60862147523250910055785, 110264570238241604072673394, 244397290937585028603794094349, 652229940568729289038518033117685, 2067551365133160531453420400711013314, 7694635622932764203876848262780670955447
Offset: 0
- P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Codara, O. M. D'Antona, and P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.
- P. Codara, O. M. D’Antona, and P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, Discrete Math. 318 (2014), 53--57. MR3141626
- S.-M. Ma, T. Mansour, and M. Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv preprint arXiv:1308.0169 [math.CO], 2013.
- Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
- K. A. Penson, P. Blasiak, A. Horzela, A. I. Solomon and G. H. E. Duchamp, Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. 50, 083512 (2009).
- M. Riedel, Set partitions of unique elements from an n-by-m matrix where elements from the same row may not be in the same partition
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
Cf.
A000110 and
A020556, if k+3 is replaced by k+1 or k+2, respectively.
-
A069223 := proc(n) local r,s,i;
if n=0 then 1 else r := [seq(4,i=1..n-1)]; s := [seq(1,i=1..n-1)];
exp(-x)*6^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
seq(A069223(n),n=1..15); # Peter Luschny, Mar 30 2011
-
f[n_] := f[n] = Sum[(k + 3)!^n/((k + 3)!*(k!^n)*E), {k, 0, Infinity}]; Table[ f[n], {n, 1, 9}]
a[n_] := (* row sum of A078741 *) Sum[(-1)^k*Sum[(-1)^p*((p - 2)*(p - 1)*p)^n*Binomial[k, p], {p, 3, k}]/k!, {k, 3, 3n}]; Array[a, 15] (* Jean-François Alcover, Sep 01 2015 *)
-
default(realprecision, 500); for(n=0, 20, print1(if(n==0, 1, round(exp(-1)*suminf(k=0, ((k+3)!)^n/( (k+3)!*(k!)^n)))), ", ")) \\ G. C. Greubel, May 15 2018
A089504
A generalization of triangle A071951 (Legendre-Stirling).
Original entry on oeis.org
1, 6, 1, 36, 30, 1, 216, 756, 90, 1, 1296, 18360, 6156, 210, 1, 7776, 441936, 387720, 31356, 420, 1, 46656, 10614240, 23705136, 4150440, 119556, 756, 1, 279936, 254788416, 1432922400, 521757936, 29257200, 373572, 1260, 1, 1679616
Offset: 1
[1]; [6,1]; [36,30,1]; [216,756,90,1]; ...
a(3,2) = 30 = ((-1)*(3*2*1)^1 + 4*(4*3*2)^1)/3.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694 [math.CO], 2013.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
- W. Lang, First 8 rows.
Cf.
A071951 (Legendre-Stirling, (2, 2) case).
-
max = 10; f[m_] := 1/Product[1 - FactorialPower[r + 2, 3]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max - m + 1), x]; a[n_, m_] := col[m][[n - m + 1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)
Showing 1-10 of 16 results.
Comments