cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A090220 Denominators used in A090219 to compute formula for column sequences of array A078741.

Original entry on oeis.org

1, 1, 1, 1, 2, 10, 20, 70, 560, 1680, 2800, 30800, 369600, 800800, 11211200, 168168000, 448448000, 7623616000, 137225088000, 434546112000, 8690922240000, 182509367040000, 669201012480000, 15391623287040000, 369398958888960000
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The corresponding numerator sequence is N(n) := [1, 6, 3, 1, 3, 3, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] for n=1..26.

Examples

			The fifth (k=7) column of A078741 needs in A090219 the factor b(5) := N(5)/a(5)= 3/2.
		

Formula

a(n) = lcm(seq(denominator(a(n+2, m))), m=1..n)), with the a(n, m) formula of A090219(n, m) but without the 1/b(n-2) factor and lcm denotes the least common multiple of a set of numbers.
N(n) := gcd(seq(numerator(a(n+2, m))), m=1..n)), with the a(n, m) formula of A090219(n, m) but without the 1/b(n-2) factor and gcd denotes the greatest common divisor > 1 of a set of numbers.

A078741 Triangle of generalized Stirling numbers S_{3,3}(n,k) read by rows (n>=1, 3<=k<=3n).

Original entry on oeis.org

1, 6, 18, 9, 1, 36, 540, 1242, 882, 243, 27, 1, 216, 13608, 94284, 186876, 149580, 56808, 11025, 1107, 54, 1, 1296, 330480, 6148872, 28245672, 49658508, 41392620, 18428400, 4691412, 706833, 63375, 3285, 90, 1, 7776, 7954848, 380841264, 3762380016, 13062960720
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2002

Keywords

Comments

The sequence of row lengths for this array is [1,4,7,10,..]= A016777(n-1), n>=1.
The g.f. for the k-th column, (with leading zeros and k>=3) is G(k,x)= x^ceiling(k/3)*P(k,x)/product(1-fallfac(p,3)*x,p=3..k), with fallfac(n,m) := A008279(n,m) (falling factorials) and P(k,x) := sum(A089517(k,m)*x^m,m=0..kmax(k)), k>=3, with kmax(k) := A004523(k-3)= floor(2*(k-3)/3)= [0,0,1,2,2,3,4,4,5,...]. For the recurrence of the G(k,x) see A089517. Wolfdieter Lang, Dec 01 2003
For the computation of the k-th column sequence see A090219.
Codara et al., show that T(n,k) gives the number of k-colorings of the graph nK_3 (the disjoint union of n copies of the complete graph K_3). An example is given below. - Peter Bala, Aug 15 2013

Examples

			From _Peter Bala_, Aug 15 2013: (Start)
The table begins
n\k |   3     4     5      6      7     8     9   10  11  12
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
  1 |   1
  2 |   6    18     9      1
  3 |  36   540  1242    882    243    27     1
  4 | 216 13608 94284 186876 149580 56808 11025 1107  54   1
...
Graph coloring interpretation of T(2,3) = 6:
The graph 2K_3 is 2 copies of K_3, the complete graph on 3 vertices:
    o b      o e
   / \      / \
  o---o    o---o
  a   c    d   f
The six 3-colorings of 2K_3 are ad|be|cf, ad|bf|ce, ae|bd|cf, ae|bf|cd, af|bd|ce, and af|be|cd. (End)
		

Crossrefs

Row sums give A069223. Cf. A078739.
The column sequences (without leading zeros) are A000400 (powers of 6), 18*A089507, 9*A089518, A089519, etc.
A089504, A069223 (row sums), A090212 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := (-1)^k*Sum[(-1)^p*((p-2)*(p-1)*p)^n*Binomial[k, p], {p, 3, k}]/k!; Table[a[n, k], {n, 1, 6}, {k, 3, 3*n}] // Flatten (* Jean-François Alcover, Dec 04 2013 *)

Formula

a(n, k) = (((-1)^k)/k!)*Sum_{p = 3..k} (-1)^p* binomial(k, p)*fallfac(p, 3)^n, with fallfac(p, 3) := A008279(p, 3) = p*(p-1)*(p-2); 3 <= k <= 3*n, n >= 1, else 0. From eq.(19) with r = 3 of the Blasiak et al. reference.
E^n = Sum_{k = 3..3*n} a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator x^3d^3/dx^3.
The row polynomials R(n,x) are given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k >= 0} (k*(k-1)*(k-2))^n*x^k/k!. - Peter Bala, Aug 15 2013

A089518 Third column (k=5) of array A078741 ((3,3)-Stirling2) divided by 9.

Original entry on oeis.org

1, 138, 10476, 683208, 42315696, 2570768928, 155010407616, 9318969502848, 559578466388736, 33585275183251968, 2015370124337581056, 120928294183739148288, 7255843732407562776576, 435354129897768445943808
Offset: 0

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.

Crossrefs

Cf. A089513 (third column of A089504), A089519, A090219.

Formula

G.f.: (1+48*x)/((1-3*2*1*x)*(1-4*3*2*x)*(1-5*4*3*x)).
a(n)= (10*(5*4*3)^n - 8*(4*3*2)^n + (3*2*1)^n)/3 = b(n) + 48*b(n-1), with b(n) := A089513(n).

A089519 Fourth column (k=6) of array A078741 ((3,3)-Stirling2).

Original entry on oeis.org

1, 882, 186876, 28245672, 3762380016, 474431543712, 58322293189056, 7082435837377152, 854925864902090496, 102893307861680404992, 12365333752840511118336, 1484928368468173355231232
Offset: 0

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.

Crossrefs

Formula

G.f.: (1+672*x+14400*x^2)/((1-3*2*1*x)*(1-4*3*2*x)*(1-5*4*3*x)*(1-6*5*4*x)).
a(n)= 20*(6*5*4)^n -30*(5*4*3)^n + 12*(4*3*2)^n - (3*2*1)^n = b(n) + 672*b(n-1) + 14400*b(n-2), with b(n) := A089514(n).
Showing 1-4 of 4 results.