A089505
Triangle of signed numbers used for the computation of the column sequences of triangle A089504.
Original entry on oeis.org
1, -1, 4, 1, -24, 50, -1, 114, -950, 1350, 31, -15504, 400520, -1897200, 2052855, -9269, 19612560, -1431859000, 17333030000, -56265334125, 49236404224, 342953, -3011508588, 594221485000, -16634292228125, 123422029355625, -302409994743808, 222337901418633, -9945637
Offset: 1
[1]; [ -1,4]; [1,-24,50]; [ -1,114,-950,1350]; ...
a(3,2)= -24 = 27*(-1)*((4*3*2)^2)/((4*3*2-3*2*1)*(5*4*3-4*3*2)).
A089504(2+3,3) = A089513(2) = 6156 = (1*(3*2*1)^2 - 24*(4*3*2)^2 + 50*(5*4*3)^2)/27.
Companion denominator sequence is
A089506.
-
b[n_, m_] := (-1)^(n - m)*FactorialPower[m + 2, 3]^(n - 1)/(Product[ FactorialPower[m + 2, 3] - FactorialPower[r + 2, 3], {r, 1, m - 1}] * Product[ FactorialPower[r + 2, 3] - FactorialPower[m + 2, 3], {r, m + 1, n}]); den[n_] := LCM @@ Table[ Denominator[b[n, m]], {m, 1, n}]; a[n_, m_] := den[n]*b[n, m]; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 02 2016 *)
Original entry on oeis.org
1, 90, 6156, 387720, 23705136, 1432922400, 86230132416, 5179923146880, 310942155338496, 18660051727004160, 1119687641441381376, 67183287394552842240, 4031045937469026349056, 241863924899255181189120
Offset: 0
-
CoefficientList[Series[1/(1-90 x+1944 x^2-8640 x^3),{x,0,20}],x] (* or *) LinearRecurrence[{90,-1944,8640},{1,90,6156},20] (* Harvey P. Dale, Jul 07 2021 *)
A090215
A generalization of triangles A071951 (Legendre-Stirling) and A089504.
Original entry on oeis.org
1, 24, 1, 576, 144, 1, 13824, 17856, 504, 1, 331776, 2156544, 199296, 1344, 1, 7962624, 259117056, 73903104, 1328256, 3024, 1, 191102976, 31102009344, 26864234496, 1189638144, 6408576, 6048, 1, 4586471424, 3732432224256, 9702226427904, 1026160275456, 11956045824, 24697728, 11088, 1
Offset: 1
[1]; [24,1]; [576,144,1]; [13824,17856,504,1]; ...
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694 [math.CO], 2013.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
- Wolfdieter Lang, First 8 rows.
The column sequences (without leading zeros) are
A009968 (powers of 24), etc.
-
max = 10; f[m_] := 1/Product[1-FactorialPower[r+3, 4]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max-m+1), x]; a[n_, m_] := col[m][[n-m+1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)
More terms coming from a-file added by
Michel Marcus, Feb 08 2023
A089507
Second column of triangle A089504 and second column of array A078741 divided by 18.
Original entry on oeis.org
1, 30, 756, 18360, 441936, 10614240, 254788416, 6115201920, 146766525696, 3522406694400, 84537821131776, 2028908069959680, 48693795855814656, 1168651113600245760, 28047626804770062336, 673143043784666480640
Offset: 0
-
[6^n*(4^(n+1)-1)/3: n in [0..15]]; // Vincenzo Librandi, Oct 18 2017
-
CoefficientList[Series[1/((1-6x)(1-24x)),{x,0,20}],x] (* or *) LinearRecurrence[{30,-144},{1,30},20] (* Harvey P. Dale, Sep 25 2017 *)
Original entry on oeis.org
1, 210, 31356, 4150440, 521757936, 64043874720, 7771495098816, 937759335004800, 112842062355914496, 13559707534436743680, 1628284591773850622976, 195461334300256627599360
Offset: 0
-
CoefficientList[Series[1/((1-6x)(1-24x)(1-60x)(1-120x)),{x,0,20}],x] (* or *) LinearRecurrence[ {210,-12744,241920,-1036800},{1,210,31356,4150440},20] (* Harvey P. Dale, Mar 17 2023 *)
A089506
Denominators used in A089505 to compute column sequences of triangle A089504.
Original entry on oeis.org
1, 3, 27, 513, 540702, 8891844390, 27306854121690, 94235953573952190, 1684561906087969348440, 1106757172299795861925080, 8644064410182787098480243878401800, 289900692457541891469406183557646377576408600, 1206267931807293851480420134690207296382114287151076400
Offset: 1
-
a[n_, m_] := (-1)^(n-m)*FactorialPower[m+2, 3]^(n-1)/(Product[ FactorialPower[m+2, 3] - FactorialPower[r+2, 3], {r, 1, m-1}]*Product[ FactorialPower[r+2, 3] - FactorialPower[m+2, 3], {r, m+1, n}]); a[n_] := LCM @@ Table[Denominator[a[n, m]], {m, 1, n}]; Array[a, 11] (* Jean-François Alcover, Sep 02 2016 *)
A078741
Triangle of generalized Stirling numbers S_{3,3}(n,k) read by rows (n>=1, 3<=k<=3n).
Original entry on oeis.org
1, 6, 18, 9, 1, 36, 540, 1242, 882, 243, 27, 1, 216, 13608, 94284, 186876, 149580, 56808, 11025, 1107, 54, 1, 1296, 330480, 6148872, 28245672, 49658508, 41392620, 18428400, 4691412, 706833, 63375, 3285, 90, 1, 7776, 7954848, 380841264, 3762380016, 13062960720
Offset: 1
From _Peter Bala_, Aug 15 2013: (Start)
The table begins
n\k | 3 4 5 6 7 8 9 10 11 12
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
1 | 1
2 | 6 18 9 1
3 | 36 540 1242 882 243 27 1
4 | 216 13608 94284 186876 149580 56808 11025 1107 54 1
...
Graph coloring interpretation of T(2,3) = 6:
The graph 2K_3 is 2 copies of K_3, the complete graph on 3 vertices:
o b o e
/ \ / \
o---o o---o
a c d f
The six 3-colorings of 2K_3 are ad|be|cf, ad|bf|ce, ae|bd|cf, ae|bf|cd, af|bd|ce, and af|be|cd. (End)
- P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027,2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Codara, O. M. D’Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers arXiv:1308.1700v1 [cs.DM]
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- W. Lang, First 6 rows.
-
a[n_, k_] := (-1)^k*Sum[(-1)^p*((p-2)*(p-1)*p)^n*Binomial[k, p], {p, 3, k}]/k!; Table[a[n, k], {n, 1, 6}, {k, 3, 3*n}] // Flatten (* Jean-François Alcover, Dec 04 2013 *)
A090217
A generalization of triangle A071951 (Legendre-Stirling).
Original entry on oeis.org
1, 120, 1, 14400, 840, 1, 1728000, 619200, 3360, 1, 207360000, 447552000, 9086400, 10080, 1, 24883200000, 322444800000, 23345280000, 76824000, 25200, 1, 2985984000000, 232185139200000, 59152550400000, 539602560000, 457848000
Offset: 1
Triangle starts:
[1];
[120,1];
[14400,840,1];
[1728000,619200,3360,1];
...
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694 [math.CO], 2013.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
- W. Lang, First 5 rows.
The column sequences (without leading zeros) are powers of 120, etc.
-
max = 10; f[m_] := 1/Product[1 - FactorialPower[r + 4, 5]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max - m + 1), x]; a[n_, m_] := col[m][[n - m + 1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 02 2016 *)
A089518
Third column (k=5) of array A078741 ((3,3)-Stirling2) divided by 9.
Original entry on oeis.org
1, 138, 10476, 683208, 42315696, 2570768928, 155010407616, 9318969502848, 559578466388736, 33585275183251968, 2015370124337581056, 120928294183739148288, 7255843732407562776576, 435354129897768445943808
Offset: 0
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
Showing 1-9 of 9 results.
Comments