cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A182933 Generalized Bell numbers based on the rising factorial powers; square array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 5, 27, 13, 1, 1, 15, 409, 778, 73, 1, 1, 52, 9089, 104149, 37553, 501, 1, 1, 203, 272947, 25053583, 57184313, 2688546, 4051, 1, 1, 877, 10515147, 9566642254, 192052025697, 56410245661, 265141267, 37633, 1
Offset: 0

Views

Author

Peter Luschny, Mar 29 2011

Keywords

Comments

These numbers are related to the generalized Bell numbers based on the falling factorial powers (A090210).
The square array starts for n>=0, k>=0:
n\k=0,1,.. A000012,A000262,A182934,...
0: A000012: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1: A000110: 1, 1, 2, 5, 15, 52, 203, 877, 4140, ...
2: A094577: 1, 3, 27, 409, 9089, 272947, 10515147, ...
3: A182932: 1, 13, 778, 104149, 25053583, 9566642254, ...
4: : 1, 73, 37553, 57184313, 192052025697, ...
5: : 1, 501, 2688546, 56410245661, ...
6: .... : 1, 4051, 265141267, 89501806774945, ...

Crossrefs

Programs

  • Maple
    A182933_AsSquareArray := proc(n,k) local r,s,i;
    r := [seq(n+1,i=1..k)]; s := [seq(1,i=1..k-1),2];
    exp(-x)*n!^k*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) end:
    seq(lprint(seq(A182933_AsSquareArray(n,k),k=0..6)),n=0..6);
  • Mathematica
    a[n_, k_] := Exp[-1]*n!^k*HypergeometricPFQ[ Table[n+1, {k}], Append[ Table[1, {k-1}], 2], 1.]; Table[ a[n-k, k] // Round , {n, 0, 8}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)

Formula

Let r_k = [n+1,...,n+1] (k occurrences of n+1), s_k = [1,...,1,2] (k-1 occurrences of 1) and F_k the generalized hypergeometric function of type k_F_k, then a(n,k) = exp(-1)*n!^k*F_k(r_k, s_k | 1).
Let B_{n}(x) = sum_{j>=0}(exp((j+n-1)!/(j-1)!*x-1)/j!) then a(n,k) = k! [x^k] series(B_{n}(x)), where [x^k] denotes the coefficient of x^k in the Taylor series for B_{n}(x).
Showing 1-1 of 1 results.