Francesca Aicardi has authored 3 sequences.
A358397
Number of pairs of partitions (A<=B, that is, A is a refinement of B) of [n] such that A is noncrossing and its nontrivial blocks are of type {a,b} with a <= n and b > n.
Original entry on oeis.org
1, 1, 3, 9, 37, 157, 811, 4309, 26327, 164947, 1151477, 8224863, 64158567, 511177515, 4386520201, 38389960685, 358214414675, 3404632390971, 34234771676473, 350261221644771, 3768281045014927, 41210302324325919, 471585931164213345, 5480984322433817771, 66388136273738685321
Offset: 0
A343254
Triangle read by rows: T(n,k) is the number of 2-balanced partitions of a set of n elements in which the first and the second subsets have cardinality k, for n >= 0, k = 0..floor(n/2).
Original entry on oeis.org
1, 1, 2, 1, 5, 2, 15, 5, 3, 52, 15, 8, 203, 52, 25, 16, 877, 203, 89, 53, 4140, 877, 354, 197, 131, 21147, 4140, 1551, 810, 512, 115975, 21147, 7403, 3643, 2193, 1496, 678570, 115975, 38154, 17759, 10201, 6697, 4213597, 678570, 210803, 93130, 51146, 32345, 22482
Offset: 0
T(4,1) = 5, number of 2-balanced partitions of a set A of 4 elements with 1 element in the first subset and 1 element in the second subset: A={a} U {b} U {c,d}. The five partitions are: ((a,b),(c),(d)), ((a,b),(c,d)), ((a,b,c),(d)), ((a,b,d),(c)), ((a,b,c,d)). Note that if a block contains a, then it must contain b. Thus, T(n,1) = T(n-1,0).
Triangle T(n,k) begins:
1;
1;
2, 1;
5, 2;
15, 5, 3;
52, 15, 8;
203, 52, 25, 16;
877, 203, 89, 53;
4140, 877, 354, 197, 131;
21147, 4140, 1551, 810, 512;
115975, 21147, 7403, 3643, 2193, 1496;
678570, 115975, 38154, 17759, 10201, 6697;
4213597, 678570, 210803, 93130, 51146, 32345, 22482;
...
- Alois P. Heinz, Rows n = 0..200, flattened
- Francesca Aicardi, Balanced partitions, preprint on researchgate, 2021.
- Francesca Aicardi, Diego Arcis, and Jesús Juyumaya, Brauer and Jones tied monoids, arXiv:2107.04170 [math.RT], 2021.
A344775
a(n) is the number of 2-balanced partitions of a set of n elements.
Original entry on oeis.org
1, 1, 3, 7, 23, 75, 296, 1222, 5699, 28160, 151857, 867356, 5302073, 34176364, 232932946, 1665341260, 12487204067, 97743060158, 797730561155, 6768022876452, 59606300409007, 543773719267894, 5131560749880622, 50012790651415626, 502782861641973256, 5206962982060933623
Offset: 0
For n=3, a(3) = b(3,0) + b(3,1). b(3,0) is the number of partitions of a set of three elements (all elements lie in the third subset), i.e., b(3,0) = Bell(3) = 5. b(3,1) is the number of 2-balanced partitions of a set {p,q,r} in which the first and the second subsets, say {p} and {q}, have cardinality 1. There are only two 2-balanced partitions: {{p,q},{r}}, and {{p,q,r}}. So, b(3,1)=2 and a(3)=7.
Comments