A278677
a(n) = Sum_{k=0..n} A011971(n, k)*(k + 1). The Aitken-Bell triangle considered as a linear transform applied to the positive numbers.
Original entry on oeis.org
1, 5, 23, 109, 544, 2876, 16113, 95495, 597155, 3929243, 27132324, 196122796, 1480531285, 11647194573, 95297546695, 809490850313, 7126717111964, 64930685865768, 611337506786061, 5940420217001199, 59502456129204083, 613689271227219015, 6510381400140132872
Offset: 0
Treeshelves of size 3:
1 1 1 1 1 1
/ \ / \ / \ / \
2 2 / \ 2 \ / 2
/ \ 2 2 3 3
3 3 \ /
3 3
Pattern T231:
1
/
/
2
\
3
Treeshelves of size 3 that avoid pattern T231:
1 1 1 1 1
/ \ \ / \ / \
2 2 \ 2 \ / 2
/ \ 2 3 3
3 3 /
3
Popularity of left children here is 5.
- Alois P. Heinz, Table of n, a(n) for n = 0..572
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- J. Françon, Arbres binaires de recherche : propriétés combinatoires et applications, Revue française d'automatique informatique recherche opérationnelle, Informatique théorique, 10 no. 3 (1976), pp. 35-50.
Cf.
A000110,
A000111,
A000142,
A001286,
A008292,
A011971,
A131178,
A278678,
A278679,
A285595,
A286897,
A367955.
-
b:= proc(n, m) option remember; `if`(n=0, [1, 0],
(p-> p+[0, p[1]*n])(b(n-1, m+1))+m*b(n-1, m))
end:
a:= n-> b(n+1, 0)[2]:
seq(a(n), n=0..22); # Alois P. Heinz, Dec 15 2023
# Using the generating function:
gf := ((exp(z + exp(z)-1)*(z-1)) + exp(exp(z)-1))/z^2: ser := series(gf, z, 25):
seq((n+2)!*coeff(ser, z, n), n=0..22); # Peter Luschny, Feb 01 2025
-
a[n_] := (n+3) BellB[n+2] - BellB[n+3];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Dec 01 2018 *)
-
from sympy import bell
HOW_MANY = 30
print([(n + 3) * bell(n+2) - bell(n + 3) for n in range(HOW_MANY)])
A095149
Triangle read by rows: Aitken's array (A011971) but with a leading diagonal before it given by the Bell numbers (A000110), 1, 1, 2, 5, 15, 52, ...
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 5, 2, 3, 5, 15, 5, 7, 10, 15, 52, 15, 20, 27, 37, 52, 203, 52, 67, 87, 114, 151, 203, 877, 203, 255, 322, 409, 523, 674, 877, 4140, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 21147, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147
Offset: 0
Triangle starts:
1;
1, 1;
2, 1, 2;
5, 2, 3, 5;
15, 5, 7, 10, 15;
52, 15, 20, 27, 37, 52;
From _Gus Wiseman_, Aug 11 2020: (Start)
Row n = 3 counts the following set partitions (described in Emeric Deutsch's comment above):
{1}{234} {12}{34} {123}{4} {1234}
{1}{2}{34} {12}{3}{4} {13}{24} {124}{3}
{1}{23}{4} {13}{2}{4} {134}{2}
{1}{24}{3} {14}{23}
{1}{2}{3}{4} {14}{2}{3}
(End)
- Alois P. Heinz, Rows n = 0..150, flattened (first 51 rows from Chai Wah Wu)
- Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for dashed patterns, arXiv:1108.2642 [math.CO], 2011.
- Anders Claesson, Generalized pattern avoidance, Europ. J. Combin., 22 7 (2001), 961-971. See Proposition 3.
- A. Bernini, M. Bouvel and L. Ferrari, Some statistics on permutations avoiding generalized patterns, PU.M.A. Vol. 18 (2007), No. 3-4, pp. 223-237 (see transposed array p. 227).
-
with(combinat): T:=proc(n,k) if k=1 then bell(n-1) elif k=2 and n>=2 then bell(n-2) elif k<=n then add(binomial(k-2,i)*bell(n-2-i),i=0..k-2) else 0 fi end: matrix(8,8,T): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
Q[1]:=t*s: for n from 2 to 11 do Q[n]:=expand(t^n*subs(t=1,Q[n-1])+s*diff(Q[n-1],s)-Q[n-1]+s*Q[n-1]) od: for n from 1 to 11 do P[n]:=sort(subs(s=1,Q[n])) od: for n from 1 to 11 do seq(coeff(P[n],t,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Oct 29 2006
A011971 := proc(n,k) option remember ; if k = 0 then if n=0 then 1; else A011971(n-1,n-1) ; fi ; else A011971(n,k-1)+A011971(n-1,k-1) ; fi ; end: A000110 := proc(n) option remember; if n<=1 then 1 ; else add( binomial(n-1,i)*A000110(n-1-i),i=0..n-1) ; fi ; end: A095149 := proc(n,k) option remember ; if k = 0 then A000110(n) ; else A011971(n-1,k-1) ; fi ; end: for n from 0 to 11 do for k from 0 to n do printf("%d, ",A095149(n,k)) ; od ; od ; # R. J. Mathar, Feb 05 2007
# alternative Maple program:
b:= proc(n, m, k) option remember; `if`(n=0, 1, add(
b(n-1, max(j, m), max(k-1, -1)), j=`if`(k=0, m+1, 1..m+1)))
end:
T:= (n, k)-> b(n, 0, n-k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Dec 20 2018
-
nmax = 10; t[n_, 1] = t[n_, n_] = BellB[n-1]; t[n_, 2] = BellB[n-2]; t[n_, k_] /; n >= k >= 3 := t[n, k] = t[n, k-1] + t[n-1, k-1]; Flatten[ Table[ t[n, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 15 2011, from formula with offset 1 *)
-
# requires Python 3.2 or higher.
from itertools import accumulate
A095149_list, blist = [1,1,1], [1]
for _ in range(2*10**2):
b = blist[-1]
blist = list(accumulate([b]+blist))
A095149_list += [blist[-1]]+ blist
# Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
A046934
Same rule as Aitken triangle (A011971) except a(0,0)=1, a(1,0)=0.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 2, 3, 4, 6, 6, 8, 11, 15, 21, 21, 27, 35, 46, 61, 82, 82, 103, 130, 165, 211, 272, 354, 354, 436, 539, 669, 834, 1045, 1317, 1671, 1671, 2025, 2461, 3000, 3669, 4503, 5548, 6865, 8536, 8536, 10207, 12232, 14693, 17693, 21362, 25865, 31413, 38278, 46814
Offset: 0
[0] [ 1]
[1] [ 0, 1]
[2] [ 1, 1, 2]
[3] [ 2, 3, 4, 6]
[4] [ 6, 8, 11, 15, 21]
[5] [ 21, 27, 35, 46, 61, 82]
[6] [ 82, 103, 130, 165, 211, 272, 354]
[7] [ 354, 436, 539, 669, 834, 1045, 1317, 1671]
[8] [1671, 2025, 2461, 3000, 3669, 4503, 5548, 6865, 8536]
[9] [8536, 10207, 12232, 14693, 17693, 21362, 25865, 31413, 38278, 46814]
-
a046934 n k = a046934_tabl !! n !! k
a046934_row n = a046934_tabl !! n
a046934_tabl = [1] : iterate (\row -> scanl (+) (last row) row) [0,1]
a046934_list = concat a046934_tabl
-- Reinhard Zumkeller, Nov 10 2013
-
alias(PS = ListTools:-PartialSums):
A046934Triangle := proc(len) local a, k, P, T; a := 0; P := [1]; T := [];
for k from 1 to len do T := [op(T), P]; P := PS([a, op(P)]); a := P[-1] od;
ListTools:-Flatten(T) end: A046934Triangle(10); # Peter Luschny, Mar 29 2022
-
a[0, 0] = 1; a[1, 0] = 0; a[n_, 0] := a[n, 0] = a[n-1, n-1]; a[n_, k_] := a[n, k] = a[n, k-1] + a[n-1, k-1]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 14 2013 *)
A046936
Same rule as Aitken triangle (A011971) except a(0,0)=0, a(1,0)=1.
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 9, 12, 16, 22, 31, 31, 40, 52, 68, 90, 121, 121, 152, 192, 244, 312, 402, 523, 523, 644, 796, 988, 1232, 1544, 1946, 2469, 2469, 2992, 3636, 4432, 5420, 6652, 8196, 10142, 12611, 12611, 15080, 18072, 21708, 26140
Offset: 0
Triangle starts:
0,
1, 1,
1, 2, 3,
3, 4, 6, 9,
9, 12, 16, 22, 31,
31, 40, 52, 68, 90, 121,
121, 152, 192, 244, 312, 402, 523,
523, 644, 796, 988, 1232, 1544, 1946, 2469,
2469, 2992, 3636, 4432, 5420, 6652, 8196, 10142, 12611,
12611, 15080, ...
-
a046936 n k = a046936_tabl !! n !! k
a046936_row n = a046936_tabl !! n
a046936_tabl = [0] : iterate (\row -> scanl (+) (last row) row) [1,1]
-- Reinhard Zumkeller, Jan 01 2014
-
a[0, 0] = 0; a[1, 0] = 1; a[n_, 0] := a[n, 0] = a[n-1, n-1]; a[n_, k_] := a[n, k] = a[n, k-1] + a[n-1, k-1]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 15 2013 *)
-
from itertools import accumulate
def A046936(): # Compare function Gould_diag in A121207.
yield [0]
accu = [1, 1]
while True:
yield accu
accu = list(accumulate([accu[-1]] + accu))
g = A046936()
[next(g) for in range(9)] # _Peter Luschny, Apr 25 2016
A046937
Triangle read by rows. Same rule as Aitken triangle (A011971) except T(0,0) = 1, T(1,0) = 2.
Original entry on oeis.org
1, 2, 3, 3, 5, 8, 8, 11, 16, 24, 24, 32, 43, 59, 83, 83, 107, 139, 182, 241, 324, 324, 407, 514, 653, 835, 1076, 1400, 1400, 1724, 2131, 2645, 3298, 4133, 5209, 6609, 6609, 8009, 9733, 11864, 14509, 17807, 21940, 27149, 33758
Offset: 0
Triangle starts:
[0] [ 1]
[1] [ 2, 3]
[2] [ 3, 5, 8]
[3] [ 8, 11, 16, 24]
[4] [ 24, 32, 43, 59, 83]
[5] [ 83, 107, 139, 182, 241, 324]
[6] [ 324, 407, 514, 653, 835, 1076, 1400]
[7] [1400, 1724, 2131, 2645, 3298, 4133, 5209, 6609]
[8] [6609, 8009, 9733, 11864, 14509, 17807, 21940, 27149, 33758]
-
a046937 n k = a046937_tabl !! n !! k
a046937_row n = a046937_tabl !! n
a046937_tabl = [1] : iterate (\row -> scanl (+) (last row) row) [2,3]
-- Reinhard Zumkeller, Jan 13 2013
-
# Compare the analogue algorithm for the Catalan triangle in A350584.
A046937Triangle := proc(len) local A, P, T, n; A := [2]; P := [1]; T := [[1]];
for n from 1 to len-1 do P := ListTools:-PartialSums([A[-1], op(P)]);
A := P; T := [op(T), P] od; T end:
A046937Triangle(9): ListTools:-Flatten(%); # Peter Luschny, Mar 27 2022
-
a[0, 0] = 1; a[1, 0] = 2; a[n_, 0] := a[n-1, n-1]; a[n_, k_] := a[n, k] = a[n, k-1] + a[n-1, k-1]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 06 2013 *)
A123346
Mirror image of the Bell triangle A011971, which is also called the Pierce triangle or Aitken's array.
Original entry on oeis.org
1, 2, 1, 5, 3, 2, 15, 10, 7, 5, 52, 37, 27, 20, 15, 203, 151, 114, 87, 67, 52, 877, 674, 523, 409, 322, 255, 203, 4140, 3263, 2589, 2066, 1657, 1335, 1080, 877, 21147, 17007, 13744, 11155, 9089, 7432, 6097, 5017, 4140, 115975, 94828, 77821, 64077, 52922, 43833, 36401, 30304, 25287, 21147
Offset: 0
Triangle begins:
1
2 1
5 3 2
15 10 7 5
52 37 27 20 15
203 151 114 87 67 52
...
- D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 418).
Cf.
A011971. Borders give Bell numbers
A000110. Diagonals give
A005493,
A011965,
A011966,
A011968,
A011969,
A046934,
A011972,
A094577,
A095149,
A106436,
A108041,
A108042,
A108043.
-
a123346 n k = a123346_tabl !! n !! k
a123346_row n = a123346_tabl !! n
a123346_tabl = map reverse a011971_tabl
-- Reinhard Zumkeller, Dec 09 2012
-
a[n_, k_] := Sum[Binomial[n - k, i - k] BellB[i], {i, k, n}];
Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2018 *)
-
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
from itertools import accumulate
A123346_list = blist = [1]
for _ in range(2*10**2):
b = blist[-1]
blist = list(accumulate([b]+blist))
A123346_list += reversed(blist)
# Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
A011972
Sequence formed by reading rows of triangle defined in A011971.
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 15, 20, 27, 37, 52, 67, 87, 114, 151, 203, 255, 322, 409, 523, 674, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828
Offset: 0
Triangle T(n, k) begins:
[0] 1;
[1] 2, 3;
[2] 5, 7, 10;
[3] 15, 20, 27, 37;
[4] 52, 67, 87, 114, 151;
[5] 203, 255, 322, 409, 523, 674;
[6] 877, 1080, 1335, 1657, 2066, 2589, 3263;
...
-
T := (n, k) -> local i; add(binomial(k, i)*combinat:-bell(n - k + i + 1), i = 0..k): seq(seq(T(n, k), k=0..n), n = 0..9); # Peter Luschny, Dec 02 2023
-
T[n_, k_] := Sum[Binomial[k, i] BellB[n - k + i + 1], {i, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 19 2019 *)
-
from itertools import accumulate
A011972_list = blist = [1]
for _ in range(10**2):
b = blist[-1]
blist = list(accumulate([b]+blist))
A011972_list += blist[1:]
# Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
A095675
Triangle read by rows, formed from product of Aitken's (or Bell's) triangle (A011971) and Pascal's triangle (A007318).
Original entry on oeis.org
1, 3, 2, 10, 13, 5, 37, 72, 55, 15, 151, 393, 450, 245, 52, 674, 2202, 3365, 2748, 1166, 203, 3263, 12850, 24582, 26781, 17048, 5936, 877, 17007, 78488, 180477, 245971, 208856, 109107, 32243, 4140, 94828, 502327, 1349900, 2209695, 2346559, 1634998
Offset: 0
Triangle begins:
1
3 2
10 13 5
37 72 55 15
151 393 450 245 52
-
a[0, 0] = 1; a[n_, 0] := a[n - 1, n - 1]; a[n_, k_] := a[n, k] = If[k < n + 1, a[n, k - 1] + a[n - 1, k - 1], 0]; p[n_, r_] := If[r <= n + 1, Binomial[n, r], 0]; am = Table[ a[n, r], {n, 0, 9}, {r, 0, 9}]; pm = Table[p[n, r], {n, 0, 9}, {r, 0, 9}]; t = Flatten[am.pm]; Delete[ t, Position[t, 0]] (* Robert G. Wilson v, Jul 12 2004 *)
Original entry on oeis.org
1, 0, 2, 1, -1, 5, 1, 4, -5, 15, 4, 2, 17, -23, 52, 11, 17, 2, 79, -109, 203, 41, 46, 80, -20, 397, -544, 877, 162, 198, 208, 418, -244, 2134, -2876, 4140, 715, 841, 1031, 994, 2389, -2053, 12196, -16113, 21147, 3425, 4014, 4663, 5771, 4950, 14693, -15819, 73798, -95495, 115975
Offset: 1
First few rows of the triangle:
1;
0, 2;
1, -1, 5;
1, 4, -5, 15;
4, 2, 17, -23, 52;
11, 17, 2, 79, -109, 203;
41, 46, 80, -20, 397, -544, 877;
...
A367808
a(n) = Sum_{k=0..n} A011971(n, k) * 2^(n - k).
Original entry on oeis.org
1, 4, 19, 103, 634, 4393, 33893, 288158, 2674849, 26888251, 290614732, 3356438587, 41203019361, 535141595208, 7324289215167, 105271669493307, 1584113665608394, 24890073684310405, 407378999173905545, 6930779764599424550, 122334506551009552893, 2236412875771806004767
Offset: 0
Showing 1-10 of 61 results.
Comments