cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A095676 Row sums of A095675.

Original entry on oeis.org

1, 5, 28, 179, 1291, 10358, 91337, 876289, 9070546, 100596161, 1188403063, 14881408616, 196696197075, 2734274453061, 39848045797116, 607129121193015, 9646995492421711, 159508268424031670, 2739019526280054917
Offset: 0

Views

Author

N. J. A. Sloane, based on a suggestion from Gary W. Adamson, Jun 22 2004

Keywords

Programs

  • Mathematica
    a[0, 0] = 1; a[n_, 0] := a[n - 1, n - 1]; a[n_, k_] := a[n, k] = If[k < n + 1, a[n, k - 1] + a[n - 1, k - 1], 0]; p[n_, r_] := If[r <= n + 1, Binomial[n, r], 0]; am = Table[ a[n, r], {n, 0, 18}, {r, 0, 18}]; pm = Table[p[n, r], {n, 0, 18}, {r, 0, 18}]; t = am.pm; Plus @@@ t (* Robert G. Wilson v, Jul 12 2004 *)

Extensions

More terms from Robert G. Wilson v, Jul 13 2004

A095674 Triangle read by rows, formed from product of Pascal's triangle (A007318) and Aitken's (or Bell's) triangle (A011971).

Original entry on oeis.org

1, 2, 2, 5, 7, 5, 15, 22, 25, 15, 52, 74, 97, 97, 52, 203, 277, 372, 449, 411, 203, 877, 1154, 1524, 1948, 2209, 1892, 877, 4140, 5294, 6816, 8734, 10718, 11570, 9402, 4140, 21147, 26441, 33255, 41954, 52357, 62107, 64404, 50127, 21147, 115975, 142416
Offset: 0

Views

Author

N. J. A. Sloane, based on a suggestion from Gary W. Adamson, Jun 22 2004

Keywords

Comments

These triangles are to be thought of as infinite lower-triangular matrices.

Examples

			Triangle begins:
1
2 2
5 7 5
15 22 25 15
52 74 97 97 52
203 277 372 449 411 203
		

Crossrefs

Cf. A007318, A011971, A095675. Row sums give A005494. First column is A000110.

Programs

  • Mathematica
    a[0, 0] = 1; a[n_, 0] := a[n - 1, n - 1]; a[n_, k_] := a[n, k] = If[k < n + 1, a[n, k - 1] + a[n - 1, k - 1], 0]; p[n_, r_] := If[r <= n + 1, Binomial[n, r], 0]; am = Table[ a[n, r], {n, 0, 9}, {r, 0, 9}]; pm = Table[p[n, r], {n, 0, 9}, {r, 0, 9}]; t = Flatten[pm.am]; Delete[ t, Position[t, 0]] (* Robert G. Wilson v, Jul 12 2004 *)

Extensions

More terms from Robert G. Wilson v, Jul 13 2004
Showing 1-2 of 2 results.