A298804
Triangle T(n,k) (1 <= k <= n) read by rows: A046936 with rows reversed and offset changed to 1.
Original entry on oeis.org
0, 1, 1, 3, 2, 1, 9, 6, 4, 3, 31, 22, 16, 12, 9, 121, 90, 68, 52, 40, 31, 523, 402, 312, 244, 192, 152, 121
Offset: 1
Triangle begins:
0,
1, 1,
3, 2, 1,
9, 6, 4, 3,
31, 22, 16, 12, 9,
121, 90, 68, 52, 40, 31
523, 402, 312, 244, 192, 152, 121
...
A040027
The Gould numbers.
Original entry on oeis.org
1, 1, 3, 9, 31, 121, 523, 2469, 12611, 69161, 404663, 2512769, 16485691, 113842301, 824723643, 6249805129, 49416246911, 406754704841, 3478340425563, 30845565317189, 283187362333331, 2687568043654521, 26329932233283223, 265946395403810289, 2766211109503317451
Offset: 0
a(3) = 9: Arranging the blocks of the 15 set partitions of {1,2,3,4} in order of their least element we find 9 set partitions for which the last block is a singleton, namely, 123|4, 124|3, 134|2, 1|24|3, 1|23|4, 12|3|4, 13|2|4, 14|2|3, and 1|2|3|4. - _Peter Bala_, Dec 17 2014
- Reinhard Zumkeller, Table of n, a(n) for n = 0..500
- Walaa Asakly, Aubrey Blecher, Charlotte Brennan, Arnold Knowfmacher, Toufik Mansour, and Stephan Wagner, Set partition asymptotics and a conjecture of Gould and Quaintance, Journal of Mathematical Analysis and Applications, Volume 416, Issue 2, 15 August 2014, Pages 672-682.
- Jean-Luc Baril and José L. Ramírez, Some distributions in increasing and flattened permutations, arXiv:2410.15434 [math.CO], 2024. See pp. 8-9,17.
- Robert Dougherty-Bliss, Gosper's algorithm and Bell numbers, arXiv:2210.13520 [cs.SC], 2022.
- Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See p. 69.
- Branko Dragovich, On Summation of p-Adic Series, arXiv:1702.02569 [math.NT], 2017.
- Branko Dragovich, Andrei Yu. Khrennikov and Natasa Z. Misic, Summation of p-Adic Functional Series in Integer Points, arXiv:1508.05079 [math.NT], 2015.
- B. Dragovich and N. Z. Misic, p-Adic invariant summation of some p-adic functional series, P-Adic Numbers, Ultrametric Analysis, and Applications, October 2014, Volume 6, Issue 4, pp 275-283.
- H. W. Gould and Jocelyn Quaintance, A linear binomial recurrence and the Bell numbers and polynomials, Applicable Analysis and Discrete Mathematics, 1 (2007), 371-385.
- R. K. Guy, Letters to N. J. A. Sloane, June-August 1968 [The letter gives the g.f. for this sequence as e^{e^x} Integral_{0..x} e^{e^t-1} dt but the correct g.f. is e^{e^x-1} Integral_0^x e^{1-e^t} dt. - _Don Knuth_, Feb 01 2018]
- Sergey Kitaev, Generalized pattern avoidance with additional restrictions, Sem. Lothar. Combinat. B48e (2003).
- Sergey Kitaev and Toufik Mansour, Simultaneous avoidance of generalized patterns, arXiv:math/0205182 [math.CO], 2002.
- Don Knuth, Email to N. J. A. Sloane, Jan 29 2018
-
a040027 n = head $ a046936_row (n + 1) -- Reinhard Zumkeller, Jan 01 2014
-
A040027 := proc(n)
option remember;
if n = 0 then
1;
else
add(binomial(n,k-1)*procname(n-k),k=1..n) ;
end if;
end proc: # Johannes W. Meijer, Oct 16 2009
-
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n, k + 1]*a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jul 02 2013 *)
Rest[CoefficientList[Assuming[Element[x, Reals], Series[E^E^x*(ExpIntegralEi[-E^x] - ExpIntegralEi[-1]), {x, 0, 20}]], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 28 2014 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*subst(A,x,x/(1-x+x*O(x^n)))/(1-x)^2);polcoeff(A,n)} /* Paul D. Hanna, Mar 23 2012 */
-
# The function Gould_diag is defined in A121207.
A040027_list = lambda size: Gould_diag(2, size)
print(A040027_list(24)) # Peter Luschny, Apr 24 2016
A121207
Triangle read by rows. The definition is by diagonals. The r-th diagonal from the right, for r >= 0, is given by b(0) = b(1) = 1; b(n+1) = Sum_{k=0..n} binomial(n+2,k+r)*a(k).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 9, 15, 1, 1, 5, 14, 31, 52, 1, 1, 6, 20, 54, 121, 203, 1, 1, 7, 27, 85, 233, 523, 877, 1, 1, 8, 35, 125, 400, 1101, 2469, 4140, 1, 1, 9, 44, 175, 635, 2046, 5625, 12611, 21147, 1, 1, 10, 54, 236, 952, 3488, 11226, 30846, 69161, 115975
Offset: 0
Triangle begins (compare also table 9.2 in the Gould-Quaintance reference):
1;
1, 1;
1, 1, 2;
1, 1, 3, 5;
1, 1, 4, 9, 15;
1, 1, 5, 14, 31, 52;
1, 1, 6, 20, 54, 121, 203;
1, 1, 7, 27, 85, 233, 523, 877;
1, 1, 8, 35, 125, 400,1101, 2469, 4140;
1, 1, 9, 44, 175, 635,2046, 5625, 12611, 21147;
1, 1, 10, 54, 236, 952,3488,11226, 30846, 69161, 115975;
1, 1, 11, 65, 309,1366,5579,20425, 65676,180474, 404663, 678570;
1, 1, 12, 77, 395,1893,8494,34685,126817,407787,1120666,2512769,4213597;
- Alois P. Heinz, Rows n = 0..140, flattened
- Robert Dougherty-Bliss, Gosper's algorithm and Bell numbers, arXiv:2210.13520 [cs.SC], 2022.
- Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See pp. 69-70.
- H. W. Gould and Jocelyn Quaintance, A linear binomial recurrence and the Bell numbers and polynomials, Applicable Analysis and Discrete Mathematics, 1 (2007), 371-385.
-
function Gould_diag(diag, size)
size < 1 && return []
size == 1 && return [1]
L = [1, 1]
accu = ones(BigInt, diag)
for _ in 1:size-2
accu = cumsum(vcat(accu[end], accu))
L = vcat(L, accu[end])
end
L end # Peter Luschny, Mar 30 2022
-
# This is the Jovovic formula with general index 'd'
# where A040027, A045499, etc. use one explicit integer
# Index n+1 is shifted to n from the original formula.
Gould := proc(n, d) local k;
if n <= 1 then return 1 else
return add(binomial(n-1+d, k+d)*Gould(k, d), k=0..n-1);
fi
end:
# row and col refer to the extrapolated super-table:
# working up to row, not row-1, shows also the Bell numbers
# at the end of each row.
for row from 0 to 13 do
for col from 0 to row do
# 'diag' is constant for one of A040027, A045499 etc.
diag := row - col;
printf("%4d, ", Gould(col, diag));
od;
print();
od; # R. J. Mathar
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, 1,
add(T(n-j, k-j)*binomial(n-1, j-1), j=1..k))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jan 08 2018
-
g[n_ /; n <= 1, ] := 1; g[n, d_] := g[n, d] = Sum[ Binomial[n-1+d, k+d]*g[k, d], {k, 0, n-1}]; Flatten[ Table[ diag = row-col; g[col, diag], {row, 0, 13}, {col, 0, row}]] (* Jean-François Alcover, Nov 25 2011, after R. J. Mathar *)
T[n_, k_] := T[n, k] = If[k == 0, 1, Sum[T[n-j, k-j] Binomial[n-1, j-1], {j, 1, k}]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2018, after Alois P. Heinz *)
-
# Computes the n-th diagonal of the triangle reading from the right.
from itertools import accumulate
def Gould_diag(diag, size):
if size < 1: return []
if size == 1: return [1]
L, accu = [1,1], [1]*diag
for _ in range(size-2):
accu = list(accumulate([accu[-1]] + accu))
L.append(accu[-1])
return L # Peter Luschny, Apr 24 2016
A007604
a(n) = a(n-1) + a(n-1-(number of odd terms so far)).
Original entry on oeis.org
1, 2, 3, 4, 6, 9, 12, 16, 22, 31, 40, 52, 68, 90, 121, 152, 192, 244, 312, 402, 523, 644, 796, 988, 1232, 1544, 1946, 2469, 2992, 3636, 4432, 5420, 6652, 8196, 10142, 12611, 15080, 18072, 21708, 26140, 31560, 38212, 46408, 56550, 69161, 81772, 96852
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a007604 n = a007604_list !! (n-1)
a007604_list = concat $ map tail $ tail a046936_tabl
-- Reinhard Zumkeller, Jan 01 2014
-
A[1]:= 1: A[2]:= 2: o:= 1:
for n from 3 to 100 do
A[n]:= A[n-1] + A[n-1-o];
if A[n]::odd then o:= o+1 fi
od:
seq(A[i],i=1..100); # Robert Israel, Mar 14 2023
-
a[n_Integer] := a[n] = Block[{c, k}, c = 0; k = 1; While[k < n, If[ OddQ[ a[k] ], c++ ]; k++ ]; Return[a[n - 1] + a[n - 1 - c] ] ]; a[1] = 1; a[2] = 2; Table[ a[n], {n, 0, 60} ]
A155118
Array T(n,k) read by antidiagonals: the k-th term of the n-th iterated differences of A140429.
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 5, 8, 12, 18, 27, 11, 16, 24, 36, 54, 81, 21, 32, 48, 72, 108, 162, 243, 43, 64, 96, 144, 216, 324, 486, 729, 85, 128, 192, 288, 432, 648, 972, 1458, 2187, 171, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 341, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0
The array starts in row n=0 with columns k>=0 as:
0 1 3 9 27 81 243 729 2187 ... A140429;
1 2 6 18 54 162 486 1458 4374 ... A025192;
1 4 12 36 108 324 972 2916 8748 ... A003946;
3 8 24 72 216 648 1944 5832 17496 ... A080923;
5 16 48 144 432 1296 3888 11664 34992 ... A257970;
11 32 96 288 864 2592 7776 23328 69984 ...
21 64 192 576 1728 5184 15552 46656 139968 ...
Antidiagonal triangle begins as:
0;
1, 1;
1, 2, 3;
3, 4, 6, 9;
5, 8, 12, 18, 27;
11, 16, 24, 36, 54, 81;
21, 32, 48, 72, 108, 162, 243;
43, 64, 96, 144, 216, 324, 486, 729;
85, 128, 192, 288, 432, 648, 972, 1458, 2187; - _G. C. Greubel_, Mar 25 2021
-
t:= func< n,k | k eq 0 select (2^(n-k) -(-1)^(n-k))/3 else 2^(n-k)*3^(k-1) >;
[t(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 25 2021
-
T:=proc(n,k)if(k>0)then return 2^n*3^(k-1):else return (2^n - (-1)^n)/3:fi:end:
for d from 0 to 8 do for m from 0 to d do print(T(d-m,m)):od:od: # Nathaniel Johnston, Apr 13 2011
-
t[n_, k_]:= If[k==0, (2^(n-k) -(-1)^(n-k))/3, 2^(n-k)*3^(k-1)];
Table[t[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 25 2021 *)
-
def A155118(n,k): return (2^(n-k) -(-1)^(n-k))/3 if k==0 else 2^(n-k)*3^(k-1)
flatten([[A155118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 25 2021
Showing 1-5 of 5 results.
Comments