Original entry on oeis.org
1, 3, 16, 139, 1750, 29388, 623909
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A020556
Number of oriented multigraphs on n labeled arcs (without loops).
Original entry on oeis.org
1, 1, 7, 87, 1657, 43833, 1515903, 65766991, 3473600465, 218310229201, 16035686850327, 1356791248984295, 130660110400259849, 14177605780945123273, 1718558016836289502159, 230999008481288064430879, 34208659263890939390952225, 5549763869122023099520756513
Offset: 0
Example: For n = 2 the a(2) = 7 are the number of set partitions of 5 such that the block |3| is a part but no block |m| with m < 3: 3|1245, 3|4|125, 3|5|124, 3|12|45, 3|14|25, 3|15|24, 3|4|5|12. - _Peter Luschny_, Apr 05 2011
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Alois P. Heinz, Table of n, a(n) for n = 0..288
- P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Codara, O. M. D'Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- Peter Luschny, Set partitions
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
- M. Riedel, Set partitions of unique elements from an n-by-m matrix where elements from the same row may not be in the same partition, Mathematics Stack Exchange.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
-
A020556 := proc(n) local k;
add((-1)^(n+k)*binomial(n,k)*combinat[bell](n+k),k=0..n) end:
seq(A020556(n),n=0..17); # Peter Luschny, Mar 27 2011
# Uses floating point arithmetic, increase working precision for large n.
A020556 := proc(n) local r,s,i;
if n=0 then 1 else r := [seq(3,i=1..n-1)]; s := [seq(1,i=1..n-1)];
exp(-x)*2^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
seq(A020556(n),n=0..15); # Peter Luschny, Mar 30 2011
T := proc(n, k) option remember;
if n = 1 then 1
elif n = k then T(n-1,1) - T(n-1,n-1)
else T(n-1,k) + T(n, k+1) fi end:
A020556 := n -> T(2*n+1,n+1);
seq(A020556(n), n = 0..99); # Peter Luschny, Apr 03 2011
-
f[n_] := f[n] = Sum[(k + 2)!^n/((k + 2)!*(k!^n)*E), {k, 0, Infinity}]; Table[ f[n], {n, 1, 16}]
(* Second program: *)
a[n_] := Sum[(-1)^k*Binomial[n, k]*BellB[2n-k], {k, 0, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 11 2017, after Vladeta Jovovic *)
-
a(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(k=0, n, (-1)^k*binomial(n,k)*polcoef(bell, 2*n-k))} \\ Andrew Howroyd, Jan 13 2020
A020555
Number of multigraphs on n labeled edges (with loops). Also number of genetically distinct states amongst n individuals.
Original entry on oeis.org
1, 2, 9, 66, 712, 10457, 198091, 4659138, 132315780, 4441561814, 173290498279, 7751828612725, 393110572846777, 22385579339430539, 1419799938299929267, 99593312799819072788, 7678949893962472351181, 647265784993486603555551, 59357523410046023899154274
Offset: 0
From _Gus Wiseman_, Jul 18 2018: (Start)
The a(2) = 9 multiset partitions of {1, 1, 2, 2}:
(1122),
(1)(122), (2)(112), (11)(22), (12)(12),
(1)(1)(22), (1)(2)(12), (2)(2)(11),
(1)(1)(2)(2).
(End)
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
- E. Keith Lloyd, Math. Proc. Camb. Phil. Soc., vol. 103 (1988), 277-284.
- A. Murthy, Generalization of partition function, introducing Smarandache factor partitions. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Alois P. Heinz, Table of n, a(n) for n = 0..310 (first 101 terms from Vincenzo Librandi)
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
- Marko Riedel et al., Set partitions of {1,1,2,2,...,n,n}
- E. A. Thompson, Gene identities and multiple relationships. Biometrics 30 (1974), 667-680. See Table 5.
-
B := n -> combinat[bell](n):
P := proc(m,n) local k; global B; option remember;
if n = 0 then B(m) else
(1/2)*( P(m+2,n-1) + P(m+1,n-1) + add( binomial(n-1,k)*P(m,k), k=0..n-1) ); fi; end;
r:=m->[seq(P(m,n),n=0..20)]; r(0); # N. J. A. Sloane, Dec 30 2018
-
max = 16; s = Series[Exp[-3/2 + Exp[x]/2]*Sum[Exp[Binomial[n+1, 2]*x]/n!, {n, 0, 3*max }], {x, 0, max}] // Normal; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n] // Round, {n, 0, max} ] (* Jean-François Alcover, Apr 23 2014, after Vladeta Jovovic *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[mps[Ceiling[Range[1/2,n,1/2]]]],{n,5}] (* Gus Wiseman, Jul 18 2018 *)
A002718
Number of bicoverings of an n-set.
Original entry on oeis.org
1, 0, 1, 8, 80, 1088, 19232, 424400, 11361786, 361058000, 13386003873, 570886397340, 27681861184474, 1511143062540976, 92091641176725504, 6219762391554815200, 462595509951068027741, 37676170944802047077248, 3343539821715571537772071, 321874499078487207168905840
Offset: 0
For n=3, there are 8 collections of distinct subsets of {1,2,3} with the property that each of 1, 2, and 3 appears in exactly two subsets:
{1,2,3},{1,2},{3}
{1,2,3},{1,3},{2}
{1,2,3},{2,3},{1}
{1,2,3},{1},{2},{3}
{1,2},{1,3},{2,3}
{1,2},{1,3},{2},{3}
{1,2},{2,3},{1},{3}
{1,3},{2,3},{1},{2}
Therefore a(3) = 8. - _Michael B. Porter_, Jul 16 2016
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 303, #40.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Peter Cameron, Thomas Prellberg, Dudley Stark, Asymptotic enumeration of 2-covers and line graphs, Discrete Math. 310 (2010), no. 2, 230-240 (see t_n).
- L. Comtet, Birecouvrements et birevêtements d'un ensemble fini, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.]
-
nmax = 16; imax = 2*(nmax - 2); egf := E^(-x - 1/2*x^2*(E^y - 1))*Sum[(x^i/i!)*E^(Binomial[i, 2]*y), {i, 0, imax}]; fx = CoefficientList[Series[egf, {y, 0, imax}], y]*Range[0, imax]!; a[n_] := Drop[ CoefficientList[ Series[fx[[n + 1]], {x, 0, imax}], x], 3] // Total; Table[ a[n] , {n, 2, nmax}] (* Jean-François Alcover, Apr 04 2013 *)
A014500
Number of graphs with unlabeled (non-isolated) nodes and n labeled edges.
Original entry on oeis.org
1, 1, 2, 9, 70, 794, 12055, 233238, 5556725, 158931613, 5350854707, 208746406117, 9315261027289, 470405726166241, 26636882237942128, 1678097862705130667, 116818375064650241036, 8932347052564257212796, 746244486452472386213939, 67796741482683128375533560
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Peter Cameron, Thomas Prellberg, Dudley Stark, Asymptotic enumeration of 2-covers and line graphs, Discrete Math. 310 (2010), no. 2, 230-240 (see u_n).
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
-
read("transforms") ;
A020556 := proc(n) local k; add((-1)^(n+k)*binomial(n, k)*combinat[bell](n+k), k=0..n) end proc:
A014500 := proc(n) local i,gexp,lexp;
gexp := [seq(1/2^i/i!,i=0..n+1)] ;
lexp := add( A020556(i)*((log(1+x))/2)^i/i!,i=0..n+1) ;
lexp := taylor(lexp,x=0,n+1) ;
lexp := gfun[seriestolist](lexp,'ogf') ;
CONV(gexp,lexp) ; op(n+1,%)*n! ; end proc:
seq(A014500(n),n=0..20) ; # R. J. Mathar, Jul 03 2011
-
max = 20; A020556[n_] := Sum[(-1)^(n+k)*Binomial[n, k]*BellB[n+k], {k, 0, n}]; egf = Exp[x/2]*Sum[A020556[n]*(Log[1+x]/2)^n/n!, {n, 0, max}] + O[x]^max; CoefficientList[egf, x]*Range[0, max-1]! (* Jean-François Alcover, Feb 19 2017, after Vladeta Jovovic *)
-
\\ here egf1 is A020556 as e.g.f.
egf1(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i,k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
seq(n)={my(B=egf1(n), L=log(1+x + O(x*x^n))/2); Vec(serlaplace(exp(x/2 + O(x*x^n))*sum(k=0, n, polcoef(B ,k)*L^k)))} \\ Andrew Howroyd, Jan 13 2020
A094574
Number of (<=2)-covers of an n-set.
Original entry on oeis.org
1, 1, 5, 40, 457, 6995, 136771, 3299218, 95668354, 3268445951, 129468914524, 5868774803537, 301122189141524, 17327463910351045, 1109375488487304027, 78484513540137938209, 6098627708074641312182, 517736625823888411991202, 47791900951140948275632148
Offset: 0
From _Gus Wiseman_, Sep 02 2019: (Start)
These are set-systems covering {1..n} with vertex-degrees <= 2. For example, the a(3) = 40 covers are:
{123} {1}{23} {1}{2}{3} {1}{2}{3}{12}
{2}{13} {1}{2}{13} {1}{2}{3}{13}
{3}{12} {1}{2}{23} {1}{2}{3}{23}
{1}{123} {1}{3}{12} {1}{2}{13}{23}
{12}{13} {1}{3}{23} {1}{2}{3}{123}
{12}{23} {2}{3}{12} {1}{3}{12}{23}
{13}{23} {2}{3}{13} {2}{3}{12}{13}
{2}{123} {1}{12}{23}
{3}{123} {1}{13}{23}
{12}{123} {1}{2}{123}
{13}{123} {1}{3}{123}
{23}{123} {2}{12}{13}
{2}{13}{23}
{2}{3}{123}
{3}{12}{13}
{3}{12}{23}
{12}{13}{23}
{1}{23}{123}
{2}{13}{123}
{3}{12}{123}
(End)
Graphs with vertex-degrees <= 2 are
A136281.
Cf.
A002718,
A007716,
A020554,
A020555,
A050535,
A094574,
A136284,
A316974,
A327104,
A327106,
A327229.
-
facs[n_]:=facs[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Length[Select[facs[Array[Prime,n,1,Times]^2],UnsameQ@@#&]],{n,0,6}] (* Gus Wiseman, Jul 18 2018 *)
m = 20;
a094577[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}];
egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
CoefficientList[egf + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, May 13 2019 *)
A188392
T(n,k) = number of (n*k) X k binary arrays with rows in nonincreasing order and n ones in every column.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 15, 16, 4, 1, 52, 139, 39, 5, 1, 203, 1750, 862, 81, 6, 1, 877, 29388, 35775, 4079, 150, 7, 1, 4140, 624889, 2406208, 507549, 15791, 256, 8, 1, 21147, 16255738, 238773109, 127126912, 5442547, 52450, 410, 9, 1, 115975, 504717929, 32867762616
Offset: 1
Array begins:
========================================================================
n\k| 1 2 3 4 5 6 7 8
---+--------------------------------------------------------------------
1 | 1 2 5 15 52 203 877 4140
2 | 1 3 16 139 1750 29388 624889 16255738
3 | 1 4 39 862 35775 2406208 238773109 32867762616
4 | 1 5 81 4079 507549 127126912 55643064708 38715666455777
5 | 1 6 150 15791 5442547 4762077620 8738543204786
6 | 1 7 256 52450 46757209 135029200594
7 | 1 8 410 154279 335279744
8 | 1 9 625 411180
9 | 1 10 915
...
All solutions for 6 X 2
..1..1....1..1....1..0....1..1
..1..1....1..1....1..0....1..0
..1..0....1..1....1..0....1..0
..0..1....0..0....0..1....0..1
..0..0....0..0....0..1....0..1
..0..0....0..0....0..1....0..0
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, 1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p,n,k), [1,n]); s*q[#q-j]))} \\ Andrew Howroyd, Dec 12 2018
A316974
Number of non-isomorphic strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}.
Original entry on oeis.org
1, 1, 4, 14, 49, 173, 652, 2494
Offset: 0
Non-isomorphic representatives of the a(3) = 14 strict multiset partitions:
(112233),
(1)(12233), (11)(2233), (12)(1233), (112)(233),
(1)(2)(1233), (1)(12)(233), (1)(23)(123), (2)(11)(233), (11)(22)(33), (12)(13)(23),
(1)(2)(3)(123), (1)(2)(12)(33), (1)(2)(13)(23).
Cf.
A001055,
A007716,
A007717,
A007719,
A020554,
A020555,
A045778,
A050535,
A053419,
A061742,
A094574,
A162247,
A316892,
A316972.
A165434
Number of tri-coverings of a set.
Original entry on oeis.org
1, 1, 4, 39, 862, 35775, 2406208, 238773109, 32867762616, 6009498859909, 1412846181645855, 416415343791239162, 150747204270574506888, 65905473934553360340713, 34305461329980340135062217, 21003556204331356488142290707, 14967168378184553824642693791437
Offset: 0
For n=2, a(2)=4, since if you have two sets of identical triples the A-brothers and the B-sisters, and you want to arrange them into a multiset of nonempty sets, where no one is allowed to cohabitate with his or her sibling, the following are possible 1.{{AB},{AB},{AB}} 2.{{AB},{AB},{A},{B}} 3.{{AB},{A},{A},{B},{B}} 4.{{A},{A},{A},{B},{B},{B}}.
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- E. A. Bender, Partitions of multisets, Discrete Mathematics 9 (1974) 301-312.
- J. S. Devitt and D. M. Jackson, The enumeration of covers of a finite set, J. London Math. Soc.(2) 25 (1982), 1-6.
- Doron Zeilberger, In How Many Ways Can You Reassemble Several Russian Dolls?, has links to more terms and related sequences
- Doron Zeilberger, In How Many Ways Can You Reassemble Several Russian Dolls?, arXiv:0909.3453 [math.CO], 2009.
- Doron Zeilberger, BABUSHKAS; Local copy
A014501
Number of graphs with loops, having unlabeled (non-isolated) nodes and n labeled edges.
Original entry on oeis.org
1, 2, 7, 43, 403, 5245, 89132, 1898630, 49209846, 1517275859, 54669946851, 2269075206395, 107199678164289, 5707320919486026, 339510756324234931, 22400182888853554291, 1628654713107465602783, 129754625253841669625051
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
Showing 1-10 of 13 results.
Comments