cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A002719 Erroneous version of A020554.

Original entry on oeis.org

1, 3, 16, 139, 1750, 29388, 623909
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2015

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A020556 Number of oriented multigraphs on n labeled arcs (without loops).

Original entry on oeis.org

1, 1, 7, 87, 1657, 43833, 1515903, 65766991, 3473600465, 218310229201, 16035686850327, 1356791248984295, 130660110400259849, 14177605780945123273, 1718558016836289502159, 230999008481288064430879, 34208659263890939390952225, 5549763869122023099520756513
Offset: 0

Views

Author

Gilbert Labelle (gilbert(AT)lacim.uqam.ca) and Simon Plouffe

Keywords

Comments

Generalized Bell numbers: a(n) = Sum_{k=2..2*n} A078739(n,k), n >= 1.
Let B_{m}(x) = Sum_{j>=0} exp(j!/(j-m)!*x-1)/j! then
a(n) = n! [x^n] taylor(B_{2}(x)), where [x^n] denotes the coefficient of x^n in the Taylor series for B_{2}(x). a(n) is row 2 of the square array representation of A090210. - Peter Luschny, Mar 27 2011
Also the number of set partitions of {1,2,...,2n+1} such that the block |n+1| is a part but no block |m| with m < n+1. - Peter Luschny, Apr 03 2011

Examples

			Example: For n = 2 the a(2) = 7 are the number of set partitions of 5 such that the block |3| is a part but no block |m| with m < 3: 3|1245, 3|4|125, 3|5|124, 3|12|45, 3|14|25, 3|15|24, 3|4|5|12. - _Peter Luschny_, Apr 05 2011
		

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • Maple
    A020556 := proc(n) local k;
    add((-1)^(n+k)*binomial(n,k)*combinat[bell](n+k),k=0..n) end:
    seq(A020556(n),n=0..17); # Peter Luschny, Mar 27 2011
    # Uses floating point arithmetic, increase working precision for large n.
    A020556 := proc(n) local r,s,i;
    if n=0 then 1 else r := [seq(3,i=1..n-1)]; s := [seq(1,i=1..n-1)];
    exp(-x)*2^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
    seq(A020556(n),n=0..15); # Peter Luschny, Mar 30 2011
    T := proc(n, k) option remember;
      if n = 1 then 1
    elif n = k then T(n-1,1) - T(n-1,n-1)
    else T(n-1,k) + T(n, k+1) fi end:
    A020556 := n -> T(2*n+1,n+1);
    seq(A020556(n), n = 0..99); # Peter Luschny, Apr 03 2011
  • Mathematica
    f[n_] := f[n] = Sum[(k + 2)!^n/((k + 2)!*(k!^n)*E), {k, 0, Infinity}]; Table[ f[n], {n, 1, 16}]
    (* Second program: *)
    a[n_] := Sum[(-1)^k*Binomial[n, k]*BellB[2n-k], {k, 0, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 11 2017, after Vladeta Jovovic *)
  • PARI
    a(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(k=0, n, (-1)^k*binomial(n,k)*polcoef(bell, 2*n-k))} \\ Andrew Howroyd, Jan 13 2020

Formula

a(n) = e*Sum_{k>=0} ((k+2)!^n/(k+2)!)*(k!^n), n>=1.
a(n) = (1/e)*Sum_{k>=2} (k*(k-1))^n/k!, n >= 1. a(0) := 1. (From eq.(26) with r=2 of the Schork reference.)
E.g.f.: (1/e)*(2 + Sum_{k>=2} ((exp(k*(k-1)*x))/k!)) (from top of p. 4656 of the Schork reference).
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*Bell(2*n-k). - Vladeta Jovovic, May 02 2004
a(n) = A095149(2n,n). - Alois P. Heinz, Dec 20 2018
a(n) = A106436(2n,n) = A182930(2n+1,n+1). - Alois P. Heinz, Jan 29 2019

Extensions

Edited by Robert G. Wilson v, Apr 30 2002

A020555 Number of multigraphs on n labeled edges (with loops). Also number of genetically distinct states amongst n individuals.

Original entry on oeis.org

1, 2, 9, 66, 712, 10457, 198091, 4659138, 132315780, 4441561814, 173290498279, 7751828612725, 393110572846777, 22385579339430539, 1419799938299929267, 99593312799819072788, 7678949893962472351181, 647265784993486603555551, 59357523410046023899154274
Offset: 0

Views

Author

Gilbert Labelle (gilbert(AT)lacim.uqam.ca), Simon Plouffe, N. J. A. Sloane

Keywords

Comments

Also the number of factorizations of (p_n#)^2. - David W. Wilson, Apr 30 2001
Also the number of multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
a(n) gives the number of genetically distinct states for n diploid individuals in the case that maternal and paternal alleles transmitted to the individuals are not distinguished (if maternal and paternal alleles are distinguished, then the number of states is A000110(2n)). - Noah A Rosenberg, Aug 23 2022

Examples

			From _Gus Wiseman_, Jul 18 2018: (Start)
The a(2) = 9 multiset partitions of {1, 1, 2, 2}:
  (1122),
  (1)(122), (2)(112), (11)(22), (12)(12),
  (1)(1)(22), (1)(2)(12), (2)(2)(11),
  (1)(1)(2)(2).
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
  • E. Keith Lloyd, Math. Proc. Camb. Phil. Soc., vol. 103 (1988), 277-284.
  • A. Murthy, Generalization of partition function, introducing Smarandache factor partitions. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Row n=2 of A219727. - Alois P. Heinz, Nov 26 2012
See also A322764. Row 0 of the array in A322765.
Main diagonal of A346500.

Programs

  • Maple
    B := n -> combinat[bell](n):
    P := proc(m,n) local k; global B; option remember;
    if n = 0 then B(m)  else
    (1/2)*( P(m+2,n-1) + P(m+1,n-1) + add( binomial(n-1,k)*P(m,k), k=0..n-1) ); fi; end;
    r:=m->[seq(P(m,n),n=0..20)]; r(0); # N. J. A. Sloane, Dec 30 2018
  • Mathematica
    max = 16; s = Series[Exp[-3/2 + Exp[x]/2]*Sum[Exp[Binomial[n+1, 2]*x]/n!, {n, 0, 3*max }], {x, 0, max}] // Normal; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n] // Round, {n, 0, max} ] (* Jean-François Alcover, Apr 23 2014, after Vladeta Jovovic *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[mps[Ceiling[Range[1/2,n,1/2]]]],{n,5}] (* Gus Wiseman, Jul 18 2018 *)

Formula

Lloyd's article gives a complicated explicit formula.
E.g.f.: exp(-3/2 + exp(x)/2)*Sum_{n>=0} exp(binomial(n+1, 2)*x)/n! [probably in the Labelle paper]. - Vladeta Jovovic, Apr 27 2004
a(n) = A001055(A002110(n)^2). - Alois P. Heinz, Aug 23 2022

A002718 Number of bicoverings of an n-set.

Original entry on oeis.org

1, 0, 1, 8, 80, 1088, 19232, 424400, 11361786, 361058000, 13386003873, 570886397340, 27681861184474, 1511143062540976, 92091641176725504, 6219762391554815200, 462595509951068027741, 37676170944802047077248, 3343539821715571537772071, 321874499078487207168905840
Offset: 0

Views

Author

Keywords

Comments

Another description: number of proper 2-covers of [1,...,n].

Examples

			For n=3, there are 8 collections of distinct subsets of {1,2,3} with the property that each of 1, 2, and 3 appears in exactly two subsets:
  {1,2,3},{1,2},{3}
  {1,2,3},{1,3},{2}
  {1,2,3},{2,3},{1}
  {1,2,3},{1},{2},{3}
  {1,2},{1,3},{2,3}
  {1,2},{1,3},{2},{3}
  {1,2},{2,3},{1},{3}
  {1,3},{2,3},{1},{2}
Therefore a(3) = 8. - _Michael B. Porter_, Jul 16 2016
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 303, #40.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 16; imax = 2*(nmax - 2); egf := E^(-x - 1/2*x^2*(E^y - 1))*Sum[(x^i/i!)*E^(Binomial[i, 2]*y), {i, 0, imax}]; fx = CoefficientList[Series[egf, {y, 0, imax}], y]*Range[0, imax]!; a[n_] := Drop[ CoefficientList[ Series[fx[[n + 1]], {x, 0, imax}], x], 3] // Total; Table[ a[n] , {n, 2, nmax}] (* Jean-François Alcover, Apr 04 2013 *)

Formula

E.g.f. for k-block bicoverings of an n-set is exp(-x-1/2*x^2*(exp(y)-1))*Sum_{i=0..inf} x^i/i!*exp(binomial(i, 2)*y).
Stirling_2 transform of A060053.
The e.g.f.'s of A002718 (T(x)) and A060053 (V(x)) are related by T(x) = V(e^x-1).
a(n) = Sum_{m=0..n + floor(n/2); k=0..n; s=0..min(m/2,k); t=0..m-2s} Stirling2(n,k) * k!/m! * binomial(m,2s) * A001147(s) * (-1)^(m+s+t) * binomial(m-2s,t) * binomial(t*(t-1)/2,k-s). Interpret m as the number of blocks in a bicovering, k the number of clumps of points that are always all together in blocks. This formula counts bicoverings by quotienting them to the clumpless case (an operation which preserves degree) and counting incidence matrices of those, and counts those matrices as the transposes of incidence matrices of labeled graphs with no isolated points and no isolated edges. - David Pasino, Jul 09 2016

Extensions

More terms from Vladeta Jovovic, Feb 18 2001
a(0), a(1) prepended by Alois P. Heinz, Jul 29 2016

A014500 Number of graphs with unlabeled (non-isolated) nodes and n labeled edges.

Original entry on oeis.org

1, 1, 2, 9, 70, 794, 12055, 233238, 5556725, 158931613, 5350854707, 208746406117, 9315261027289, 470405726166241, 26636882237942128, 1678097862705130667, 116818375064650241036, 8932347052564257212796, 746244486452472386213939, 67796741482683128375533560
Offset: 0

Views

Author

Simon Plouffe, Gilbert Labelle (gilbert(AT)lacim.uqam.ca)

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Row n=2 of A331126.

Programs

  • Maple
    read("transforms") ;
    A020556 := proc(n) local k; add((-1)^(n+k)*binomial(n, k)*combinat[bell](n+k), k=0..n) end proc:
    A014500 := proc(n) local i,gexp,lexp;
    gexp := [seq(1/2^i/i!,i=0..n+1)] ;
    lexp := add( A020556(i)*((log(1+x))/2)^i/i!,i=0..n+1) ;
    lexp := taylor(lexp,x=0,n+1) ;
    lexp := gfun[seriestolist](lexp,'ogf') ;
    CONV(gexp,lexp) ; op(n+1,%)*n! ; end proc:
    seq(A014500(n),n=0..20) ; # R. J. Mathar, Jul 03 2011
  • Mathematica
    max = 20; A020556[n_] := Sum[(-1)^(n+k)*Binomial[n, k]*BellB[n+k], {k, 0, n}]; egf = Exp[x/2]*Sum[A020556[n]*(Log[1+x]/2)^n/n!, {n, 0, max}] + O[x]^max; CoefficientList[egf, x]*Range[0, max-1]! (* Jean-François Alcover, Feb 19 2017, after Vladeta Jovovic *)
  • PARI
    \\ here egf1 is A020556 as e.g.f.
    egf1(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i,k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
    seq(n)={my(B=egf1(n), L=log(1+x + O(x*x^n))/2); Vec(serlaplace(exp(x/2 + O(x*x^n))*sum(k=0, n, polcoef(B ,k)*L^k)))} \\ Andrew Howroyd, Jan 13 2020

Formula

E.g.f.: exp(-1+x/2)*Sum((1+x)^binomial(n, 2)/n!, n=0..infinity) [probably in the Labelle paper]. - Vladeta Jovovic, Apr 27 2004
E.g.f.: exp(x/2)*Sum(A020556(n)*(log(1+x)/2)^n/n!, n=0..infinity). - Vladeta Jovovic, May 02 2004
Binomial transform of A060053.
The e.g.f.'s of A020554 (S(x)) and A014500 (U(x)) are related by S(x) = U(e^x-1).
The e.g.f.'s of A014500 (U(x)) and A060053 (V(x)) are related by U(x) = e^x*V(x).

A094574 Number of (<=2)-covers of an n-set.

Original entry on oeis.org

1, 1, 5, 40, 457, 6995, 136771, 3299218, 95668354, 3268445951, 129468914524, 5868774803537, 301122189141524, 17327463910351045, 1109375488487304027, 78484513540137938209, 6098627708074641312182, 517736625823888411991202, 47791900951140948275632148
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 12 2004

Keywords

Comments

Also the number of strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. For example, the a(2) = 5 strict multiset partitions of {1, 1, 2, 2} are (1122), (1)(122), (2)(112), (11)(22), (1)(2)(12). - Gus Wiseman, Jul 18 2018

Examples

			From _Gus Wiseman_, Sep 02 2019: (Start)
These are set-systems covering {1..n} with vertex-degrees <= 2. For example, the a(3) = 40 covers are:
  {123}  {1}{23}    {1}{2}{3}     {1}{2}{3}{12}
         {2}{13}    {1}{2}{13}    {1}{2}{3}{13}
         {3}{12}    {1}{2}{23}    {1}{2}{3}{23}
         {1}{123}   {1}{3}{12}    {1}{2}{13}{23}
         {12}{13}   {1}{3}{23}    {1}{2}{3}{123}
         {12}{23}   {2}{3}{12}    {1}{3}{12}{23}
         {13}{23}   {2}{3}{13}    {2}{3}{12}{13}
         {2}{123}   {1}{12}{23}
         {3}{123}   {1}{13}{23}
         {12}{123}  {1}{2}{123}
         {13}{123}  {1}{3}{123}
         {23}{123}  {2}{12}{13}
                    {2}{13}{23}
                    {2}{3}{123}
                    {3}{12}{13}
                    {3}{12}{23}
                    {12}{13}{23}
                    {1}{23}{123}
                    {2}{13}{123}
                    {3}{12}{123}
(End)
		

Crossrefs

Row n=2 of A219585. - Alois P. Heinz, Nov 23 2012
Dominated by A003465.
Graphs with vertex-degrees <= 2 are A136281.
Main diagonal of A346517.

Programs

  • Mathematica
    facs[n_]:=facs[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[Array[Prime,n,1,Times]^2],UnsameQ@@#&]],{n,0,6}] (* Gus Wiseman, Jul 18 2018 *)
    m = 20;
    a094577[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}];
    egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
    CoefficientList[egf + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, May 13 2019 *)

Formula

Row sums of A094573.
E.g.f: exp(-1-1/2*(exp(x)-1))*Sum(exp(x*binomial(n+1, 2))/n!, n=0..infinity) or exp((1-exp(x))/2)*Sum(A094577 (n)*(x/2)^n/n!, n=0..infinity).

A188392 T(n,k) = number of (n*k) X k binary arrays with rows in nonincreasing order and n ones in every column.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 15, 16, 4, 1, 52, 139, 39, 5, 1, 203, 1750, 862, 81, 6, 1, 877, 29388, 35775, 4079, 150, 7, 1, 4140, 624889, 2406208, 507549, 15791, 256, 8, 1, 21147, 16255738, 238773109, 127126912, 5442547, 52450, 410, 9, 1, 115975, 504717929, 32867762616
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2011

Keywords

Examples

			Array begins:
========================================================================
n\k| 1  2   3      4         5            6            7               8
---+--------------------------------------------------------------------
1  | 1  2   5     15        52          203           877           4140
2  | 1  3  16    139      1750        29388        624889       16255738
3  | 1  4  39    862     35775      2406208     238773109    32867762616
4  | 1  5  81   4079    507549    127126912   55643064708 38715666455777
5  | 1  6 150  15791   5442547   4762077620 8738543204786
6  | 1  7 256  52450  46757209 135029200594
7  | 1  8 410 154279 335279744
8  | 1  9 625 411180
9  | 1 10 915
     ...
All solutions for 6 X 2
..1..1....1..1....1..0....1..1
..1..1....1..1....1..0....1..0
..1..0....1..1....1..0....1..0
..0..1....0..0....0..1....0..1
..0..0....0..0....0..1....0..1
..0..0....0..0....0..1....0..0
		

Crossrefs

Columns 3..7 are A011863(n+1), A175707, A188389, A188390, A188391.
Main diagonal gives A188388.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, 1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p,n,k), [1,n]); s*q[#q-j]))} \\ Andrew Howroyd, Dec 12 2018

A316974 Number of non-isomorphic strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}.

Original entry on oeis.org

1, 1, 4, 14, 49, 173, 652, 2494
Offset: 0

Views

Author

Gus Wiseman, Jul 17 2018

Keywords

Comments

Also the number of unlabeled multigraphs with n edges, allowing loops, spanning an initial interval of positive integers with no equivalent vertices (two vertices are equivalent if in every edge the multiplicity of the first is equal to the multiplicity of the second). For example, non-isomorphic representatives of the a(2) = 4 multigraphs are {(1,2),(1,3)}, {(1,1),(1,2)}, {(1,1),(2,2)}, {(1,1),(1,1)}.

Examples

			Non-isomorphic representatives of the a(3) = 14 strict multiset partitions:
  (112233),
  (1)(12233), (11)(2233), (12)(1233), (112)(233),
  (1)(2)(1233), (1)(12)(233), (1)(23)(123), (2)(11)(233), (11)(22)(33), (12)(13)(23),
  (1)(2)(3)(123), (1)(2)(12)(33), (1)(2)(13)(23).
		

Crossrefs

Extensions

a(7) from Andrew Howroyd, Feb 07 2020

A165434 Number of tri-coverings of a set.

Original entry on oeis.org

1, 1, 4, 39, 862, 35775, 2406208, 238773109, 32867762616, 6009498859909, 1412846181645855, 416415343791239162, 150747204270574506888, 65905473934553360340713, 34305461329980340135062217, 21003556204331356488142290707, 14967168378184553824642693791437
Offset: 0

Views

Author

Doron Zeilberger, Sep 18 2009

Keywords

Examples

			For n=2, a(2)=4, since if you have two sets of identical triples the A-brothers and the B-sisters, and you want to arrange them into a multiset of nonempty sets, where no one is allowed to cohabitate with his or her sibling, the following are possible 1.{{AB},{AB},{AB}} 2.{{AB},{AB},{A},{B}} 3.{{AB},{A},{A},{B},{B}} 4.{{A},{A},{A},{B},{B},{B}}.
		

Crossrefs

Row 3 of A188392.
Cf. A000110 (unicoverings), A020554 (bicoverings).

Programs

  • Maple
    Do SeqBrn(3,n); in the Maple package BABUSHKAS (see links) where n+1 is the number of desired terms.

Extensions

Edited by Charles R Greathouse IV, Oct 28 2009

A014501 Number of graphs with loops, having unlabeled (non-isolated) nodes and n labeled edges.

Original entry on oeis.org

1, 2, 7, 43, 403, 5245, 89132, 1898630, 49209846, 1517275859, 54669946851, 2269075206395, 107199678164289, 5707320919486026, 339510756324234931, 22400182888853554291, 1628654713107465602783, 129754625253841669625051
Offset: 0

Views

Author

Simon Plouffe, Gilbert Labelle (gilbert(AT)lacim.uqam.ca)

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Row n=2 of A331161.

Formula

E.g.f.: exp(-1+x/2)*Sum((1+x)^binomial(n+1, 2)/n!, n=0..infinity) [probably in the Labelle paper]. - Vladeta Jovovic, Apr 27 2004
Showing 1-10 of 13 results. Next