cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A020556 Number of oriented multigraphs on n labeled arcs (without loops).

Original entry on oeis.org

1, 1, 7, 87, 1657, 43833, 1515903, 65766991, 3473600465, 218310229201, 16035686850327, 1356791248984295, 130660110400259849, 14177605780945123273, 1718558016836289502159, 230999008481288064430879, 34208659263890939390952225, 5549763869122023099520756513
Offset: 0

Views

Author

Gilbert Labelle (gilbert(AT)lacim.uqam.ca) and Simon Plouffe

Keywords

Comments

Generalized Bell numbers: a(n) = Sum_{k=2..2*n} A078739(n,k), n >= 1.
Let B_{m}(x) = Sum_{j>=0} exp(j!/(j-m)!*x-1)/j! then
a(n) = n! [x^n] taylor(B_{2}(x)), where [x^n] denotes the coefficient of x^n in the Taylor series for B_{2}(x). a(n) is row 2 of the square array representation of A090210. - Peter Luschny, Mar 27 2011
Also the number of set partitions of {1,2,...,2n+1} such that the block |n+1| is a part but no block |m| with m < n+1. - Peter Luschny, Apr 03 2011

Examples

			Example: For n = 2 the a(2) = 7 are the number of set partitions of 5 such that the block |3| is a part but no block |m| with m < 3: 3|1245, 3|4|125, 3|5|124, 3|12|45, 3|14|25, 3|15|24, 3|4|5|12. - _Peter Luschny_, Apr 05 2011
		

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • Maple
    A020556 := proc(n) local k;
    add((-1)^(n+k)*binomial(n,k)*combinat[bell](n+k),k=0..n) end:
    seq(A020556(n),n=0..17); # Peter Luschny, Mar 27 2011
    # Uses floating point arithmetic, increase working precision for large n.
    A020556 := proc(n) local r,s,i;
    if n=0 then 1 else r := [seq(3,i=1..n-1)]; s := [seq(1,i=1..n-1)];
    exp(-x)*2^(n-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
    seq(A020556(n),n=0..15); # Peter Luschny, Mar 30 2011
    T := proc(n, k) option remember;
      if n = 1 then 1
    elif n = k then T(n-1,1) - T(n-1,n-1)
    else T(n-1,k) + T(n, k+1) fi end:
    A020556 := n -> T(2*n+1,n+1);
    seq(A020556(n), n = 0..99); # Peter Luschny, Apr 03 2011
  • Mathematica
    f[n_] := f[n] = Sum[(k + 2)!^n/((k + 2)!*(k!^n)*E), {k, 0, Infinity}]; Table[ f[n], {n, 1, 16}]
    (* Second program: *)
    a[n_] := Sum[(-1)^k*Binomial[n, k]*BellB[2n-k], {k, 0, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 11 2017, after Vladeta Jovovic *)
  • PARI
    a(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(k=0, n, (-1)^k*binomial(n,k)*polcoef(bell, 2*n-k))} \\ Andrew Howroyd, Jan 13 2020

Formula

a(n) = e*Sum_{k>=0} ((k+2)!^n/(k+2)!)*(k!^n), n>=1.
a(n) = (1/e)*Sum_{k>=2} (k*(k-1))^n/k!, n >= 1. a(0) := 1. (From eq.(26) with r=2 of the Schork reference.)
E.g.f.: (1/e)*(2 + Sum_{k>=2} ((exp(k*(k-1)*x))/k!)) (from top of p. 4656 of the Schork reference).
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*Bell(2*n-k). - Vladeta Jovovic, May 02 2004
a(n) = A095149(2n,n). - Alois P. Heinz, Dec 20 2018
a(n) = A106436(2n,n) = A182930(2n+1,n+1). - Alois P. Heinz, Jan 29 2019

Extensions

Edited by Robert G. Wilson v, Apr 30 2002

A020555 Number of multigraphs on n labeled edges (with loops). Also number of genetically distinct states amongst n individuals.

Original entry on oeis.org

1, 2, 9, 66, 712, 10457, 198091, 4659138, 132315780, 4441561814, 173290498279, 7751828612725, 393110572846777, 22385579339430539, 1419799938299929267, 99593312799819072788, 7678949893962472351181, 647265784993486603555551, 59357523410046023899154274
Offset: 0

Views

Author

Gilbert Labelle (gilbert(AT)lacim.uqam.ca), Simon Plouffe, N. J. A. Sloane

Keywords

Comments

Also the number of factorizations of (p_n#)^2. - David W. Wilson, Apr 30 2001
Also the number of multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
a(n) gives the number of genetically distinct states for n diploid individuals in the case that maternal and paternal alleles transmitted to the individuals are not distinguished (if maternal and paternal alleles are distinguished, then the number of states is A000110(2n)). - Noah A Rosenberg, Aug 23 2022

Examples

			From _Gus Wiseman_, Jul 18 2018: (Start)
The a(2) = 9 multiset partitions of {1, 1, 2, 2}:
  (1122),
  (1)(122), (2)(112), (11)(22), (12)(12),
  (1)(1)(22), (1)(2)(12), (2)(2)(11),
  (1)(1)(2)(2).
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
  • E. Keith Lloyd, Math. Proc. Camb. Phil. Soc., vol. 103 (1988), 277-284.
  • A. Murthy, Generalization of partition function, introducing Smarandache factor partitions. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Row n=2 of A219727. - Alois P. Heinz, Nov 26 2012
See also A322764. Row 0 of the array in A322765.
Main diagonal of A346500.

Programs

  • Maple
    B := n -> combinat[bell](n):
    P := proc(m,n) local k; global B; option remember;
    if n = 0 then B(m)  else
    (1/2)*( P(m+2,n-1) + P(m+1,n-1) + add( binomial(n-1,k)*P(m,k), k=0..n-1) ); fi; end;
    r:=m->[seq(P(m,n),n=0..20)]; r(0); # N. J. A. Sloane, Dec 30 2018
  • Mathematica
    max = 16; s = Series[Exp[-3/2 + Exp[x]/2]*Sum[Exp[Binomial[n+1, 2]*x]/n!, {n, 0, 3*max }], {x, 0, max}] // Normal; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n] // Round, {n, 0, max} ] (* Jean-François Alcover, Apr 23 2014, after Vladeta Jovovic *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[mps[Ceiling[Range[1/2,n,1/2]]]],{n,5}] (* Gus Wiseman, Jul 18 2018 *)

Formula

Lloyd's article gives a complicated explicit formula.
E.g.f.: exp(-3/2 + exp(x)/2)*Sum_{n>=0} exp(binomial(n+1, 2)*x)/n! [probably in the Labelle paper]. - Vladeta Jovovic, Apr 27 2004
a(n) = A001055(A002110(n)^2). - Alois P. Heinz, Aug 23 2022

A060053 Number of r-bicoverings (or restricted proper 2-covers) of an n-set.

Original entry on oeis.org

1, 0, 1, 5, 43, 518, 8186, 163356, 3988342, 116396952, 3985947805, 157783127673, 7131072006829, 364166073164914, 20827961078794845, 1323968417981743817, 92917890994442697487, 7157607311779373890120, 602043767970637640566684
Offset: 0

Views

Author

Vladeta Jovovic, Feb 15 2001

Keywords

Comments

A bicovering is called an r-bicovering if the intersection of every two blocks contains at most one element.
Another name for this sequence is the number of restricted proper 2-covers of [1,...,n].
Number of T_0 2-regular set-systems on an n-set. - Andrew Howroyd, Jan 08 2020

Examples

			There are 5 r-bicoverings of a 3-set: 1 3-block bicovering {{1, 2}, {1, 3}, {2, 3}} and 4 4-block bicoverings {{1}, {2}, {3}, {1, 2, 3}}, {{2}, {3}, {1, 2}, {1, 3}}, {{1}, {3}, {1, 2}, {2, 3}}, {{1}, {2}, {1, 3}, {2, 3}}.
G.f. = 1 + x^2 + 5*x^3 + 43*x^4 + 518*x^5 + 8186*x^6 + 163356*x^7 + ...
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983. (See p. 203.)

Crossrefs

Row 2 of A331039.
Row sums of A060052.

Programs

  • Maple
    A060053 := proc(n) local h, m; h := (m,n) -> add((-1/2)^k*binomial(m*(m-1)/2,n-k)/k!, k=0..n); n!*add(h(m,n)/m!, m=0..3*n); ceil(evalf(%/exp(1),99)) end: seq(A060053(i), i=0..18);
    # Caveat computator! Limited accuracy. Do not use it for n > 50. - Peter Luschny, Jul 06 2011
  • Mathematica
    f[n_] := FullSimplify[(n!/E)*Sum[(1/m!)*Sum[(-1/2)^k*Binomial[m*(m - 1)/2,
    n - k]/k!, {k, 0, n}], {m, 0, Infinity}]] (* Robert G. Wilson v, Jul 03 2011 *)
  • PARI
    a(n)=round(n!/exp(1)*sum(m=0,3*n+1,1/m!*sum(k=0,n,(-1/2)^k*binomial(m*(m-1)/2,n-k)/k!)))
    
  • PARI
    \\ here egf1 is A020556 as e.g.f.
    egf1(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i,k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
    seq(n)={my(A=egf1(n), B=log(1+x + O(x*x^n))/2); Vec(serlaplace(exp(-x/2 + O(x*x^n))*sum(k=0, n, polcoef(A,k)*B^k)))} \\ Andrew Howroyd, Jan 13 2020

Formula

E.g.f. for number of k-block r-bicoverings of an n-set is exp(-x-x^2*y/2)*Sum_{i=0..inf} (1+y)^binomial(i, 2)*x^i/i!.
a(n) = row sums of A060052.
Inverse binomial transform of A014500. - Vladeta Jovovic, Aug 22 2006
The e.g.f.'s of A002718 (T(x)) and A060053 (V(x)) are related by T(x) = V(e^x-1).
The e.g.f.'s of A014500 (U(x)) and A060053 (V(x)) are related by U(x) = e^x*V(x).
E.g.f.: exp(-x/2)*(Sum_{k>=0} A020556(k)*(log(1 + x)/2)^k/k!). - Andrew Howroyd, Jan 13 2020

A020554 Number of multigraphs on n labeled edges (without loops).

Original entry on oeis.org

1, 1, 3, 16, 139, 1750, 29388, 624889, 16255738, 504717929, 18353177160, 769917601384, 36803030137203, 1984024379014193, 119571835094300406, 7995677265437541258, 589356399302126773920, 47609742627231823142029, 4193665147256300117666879
Offset: 0

Views

Author

Gilbert Labelle (gilbert(AT)lacim.uqam.ca) and Simon Plouffe

Keywords

Comments

Or, number of bicoverings of an n-set.
Or, number of 2-covers of [1,...,n].
Also the number of set multipartitions (multisets of sets) of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018

Examples

			From _Gus Wiseman_, Jul 18 2018: (Start)
The a(3) = 16 set multipartitions of {1, 1, 2, 2, 3, 3}:
  (123)(123)
  (1)(23)(123) (2)(13)(123) (3)(12)(123) (12)(13)(23)
  (1)(1)(23)(23) (1)(2)(3)(123) (1)(2)(13)(23) (1)(3)(12)(23) (2)(2)(13)(13) (2)(3)(12)(13) (3)(3)(12)(12)
  (1)(1)(2)(3)(23) (1)(2)(2)(3)(13) (1)(2)(3)(3)(12)
  (1)(1)(2)(2)(3)(3)
(End)
		

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • Mathematica
    Ceiling[ CoefficientList[ Series[ Exp[ -1 + (Exp[ z ] - 1)/2 ]Sum[ Exp[ s(s - 1)z/2 ]/s!, {s, 0, 21} ], {z, 0, 9} ], z ] Table[ n!, {n, 0, 9} ] ] (* Mitch Harris, May 01 2004 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[Ceiling[Range[1/2,n,1/2]]],And@@UnsameQ@@@#&]],{n,5}] (* Gus Wiseman, Jul 18 2018 *)

Formula

E.g.f.: exp(-3/2+exp(x)/2) * Sum_{n>=0} exp(binomial(n, 2)*x)/n! [Comtet]. - Vladeta Jovovic, Apr 27 2004
E.g.f. (an equivalent version in Maple format): G:=exp(-1+(exp(z)-1)/2)*sum(exp(s*(s-1)*z/2)/s!, s=0..infinity);
E.g.f.: exp((exp(x)-1)/2)*Sum_{n>=0} A020556(n)*(x/2)^n/n!. - Vladeta Jovovic, May 02 2004
Stirling_2 transform of A014500.
The e.g.f.'s of A020554 (S(x)) and A014500 (U(x)) are related by S(x) = U(e^x-1).

A098620 Consider the family of multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 4, 26, 257, 3586, 66207, 1540693, 43659615, 1469677309, 57681784820, 2601121752854, 133170904684965, 7664254746784243, 491679121677763607, 34905596059311761907, 2725010800987216480527, 232643959843709167832482, 21613761720729431904201734
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ here R(n) is A000110 as e.g.f.
    egf1(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
    EnrichedGnSeq(R)={my(n=serprec(R, x)-1, B=exp(x/2 + O(x*x^n))*subst(egf1(n), x, log(1+x + O(x*x^n))/2)); Vec(serlaplace(subst(B, x, R-polcoef(R,0))))}
    R(n)={exp(exp(x + O(x*x^n))-1)}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A000110. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021

A331126 Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set multipartitions (multisets of sets) on a k-set.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 9, 3, 1, 1, 0, 1, 70, 29, 4, 1, 1, 0, 1, 794, 666, 68, 5, 1, 1, 0, 1, 12055, 28344, 3642, 134, 6, 1, 1, 0, 1, 233238, 1935054, 469368, 14951, 237, 7, 1, 1, 0, 1, 5556725, 193926796, 119843417, 5289611, 50985, 388, 8, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 10 2020

Keywords

Comments

An n-regular set multipartition is a finite multiset of nonempty sets in which each element appears in n blocks.
A set multipartition is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of binary matrices with k distinct columns and any number of nonzero rows with n ones in every column and rows in nonincreasing lexicographic order.

Examples

			Array begins:
====================================================================
n\k | 0 1 2   3      4         5             6                 7
----+---------------------------------------------------------------
  0 | 1 1 0   0      0         0             0                 0 ...
  1 | 1 1 1   1      1         1             1                 1 ...
  2 | 1 1 2   9     70       794         12055            233238 ...
  3 | 1 1 3  29    666     28344       1935054         193926796 ...
  4 | 1 1 4  68   3642    469368     119843417       53059346010 ...
  5 | 1 1 5 134  14951   5289611    4681749424     8639480647842 ...
  6 | 1 1 6 237  50985  46241343  134332244907   989821806791367 ...
  7 | 1 1 7 388 151901 333750928 3032595328876 85801167516707734 ...
     ...
The A(2,2) = 2 matrices are:
   [1 1]   [1 0]
   [1 0]   [1 0]
   [0 1]   [0 1]
           [0 1]
The corresponding set multipartitions are:
    {{1,2}, {1}, {2}},
    {{1}, {1}, {2}, {2}}.
		

Crossrefs

Rows n=1..3 are A000012, A014500, A331389.
Columns k=0..3 are A000012, A000012, A001477, A331390.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, k<=1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))}

Formula

A(n, k) = Sum_{j=1..k} Stirling1(k, j)*A188392(n, j) for n, k >= 1.
A331391(n) = Sum_{d|n} A(n/d, d).

A014501 Number of graphs with loops, having unlabeled (non-isolated) nodes and n labeled edges.

Original entry on oeis.org

1, 2, 7, 43, 403, 5245, 89132, 1898630, 49209846, 1517275859, 54669946851, 2269075206395, 107199678164289, 5707320919486026, 339510756324234931, 22400182888853554291, 1628654713107465602783, 129754625253841669625051
Offset: 0

Views

Author

Simon Plouffe, Gilbert Labelle (gilbert(AT)lacim.uqam.ca)

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Row n=2 of A331161.

Formula

E.g.f.: exp(-1+x/2)*Sum((1+x)^binomial(n+1, 2)/n!, n=0..infinity) [probably in the Labelle paper]. - Vladeta Jovovic, Apr 27 2004

A098624 Consider the family of multigraphs enriched by the species of derangements. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 0, 1, 2, 15, 84, 750, 6852, 79639, 1006184, 14875218, 241078100, 4392257716, 87279581232, 1905609327583, 45008114794874, 1150897256534370, 31580332783936416, 928535967078634497, 29090873853321687666, 969132936087009709174, 34198721664081728281400
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000166 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={exp(-x + O(x*x^n))/(1-x)}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A000166. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(14) and beyond from Andrew Howroyd, Jan 12 2021

A098628 Consider the family of multigraphs enriched by the species of parts. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 2, 12, 128, 2224, 56000, 1880832, 79985792, 4161468928, 258415579648, 18793653411840, 1576791247634432, 150745211441983488, 16253127712884269056, 1959064946185017851904, 262002352633857351942144, 38624060984664180255621120, 6240304185636529522872025088
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000079 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={exp(2*x + O(x*x^n))}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A000079. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

A098636 Consider the family of multigraphs enriched by the species of odd sets. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 2, 10, 78, 885, 13487, 261848, 6255453, 179297990, 6046396379, 236175330388, 10549286540957, 533103416306743, 30203144498636380, 1903491404510540902, 132543022174482851436, 10136316177816553484295, 846893706267135762556915, 76941424170126460702604994
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ EnrichedGnSeq defined in A098620.
    EnrichedGnSeq(sinh(x + O(x*x^20))) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(sinh(x)) where B(x) is the e.g.f. of A014500. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021
Showing 1-10 of 19 results. Next