A098622
Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 17, 250, 5465, 162677, 6241059, 297132409, 17075153860, 1159545515804, 91501467848088, 8276847825732141, 848577193578286942, 97672164219292005480, 12518933902769241287267, 1774279753092963892540493, 276351502436571180980604240, 47046745370508674770872396843
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
-
\\ here R(n) is A000110 as e.g.f.
egfA014507(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, stirling(i,k,1)*polcoef(bell, 2*k))*x^i/i!) + O(x*x^n)}
EnrichedGdlSeq(R)={my(n=serprec(R, x)-1); Vec(serlaplace(subst(egfA014507(n), x, R-polcoef(R,0))))}
R(n)={exp(exp(x + O(x*x^n))-1)}
EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A098623
Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled arcs.
Original entry on oeis.org
1, 1, 8, 109, 2229, 62684, 2289151, 104344153, 5767234550, 378073098155, 28888082263581, 2536660090249102, 253007765488793325, 28383529110762969901, 3551558435250676339536, 492092920443604792460905, 75025155137863150912784409, 12516480979952118669729618300
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
-
\\ here R(n) is A000110 as e.g.f.
egfA020556(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
EnrichedGdSeq(R)={my(n=serprec(R, x)-1, B=subst(egfA020556(n), x, log(1+x + O(x*x^n)))); Vec(serlaplace(subst(B, x, R-polcoef(R,0))))}
R(n)={exp(exp(x + O(x*x^n))-1)}
EnrichedGdSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A098624
Consider the family of multigraphs enriched by the species of derangements. Sequence gives number of those multigraphs with n labeled edges.
Original entry on oeis.org
1, 0, 1, 2, 15, 84, 750, 6852, 79639, 1006184, 14875218, 241078100, 4392257716, 87279581232, 1905609327583, 45008114794874, 1150897256534370, 31580332783936416, 928535967078634497, 29090873853321687666, 969132936087009709174, 34198721664081728281400
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A098628
Consider the family of multigraphs enriched by the species of parts. Sequence gives number of those multigraphs with n labeled edges.
Original entry on oeis.org
1, 2, 12, 128, 2224, 56000, 1880832, 79985792, 4161468928, 258415579648, 18793653411840, 1576791247634432, 150745211441983488, 16253127712884269056, 1959064946185017851904, 262002352633857351942144, 38624060984664180255621120, 6240304185636529522872025088
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A098636
Consider the family of multigraphs enriched by the species of odd sets. Sequence gives number of those multigraphs with n labeled edges.
Original entry on oeis.org
1, 1, 2, 10, 78, 885, 13487, 261848, 6255453, 179297990, 6046396379, 236175330388, 10549286540957, 533103416306743, 30203144498636380, 1903491404510540902, 132543022174482851436, 10136316177816553484295, 846893706267135762556915, 76941424170126460702604994
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A099692
Consider the family of multigraphs enriched by the species of directed sets. Sequence gives number of those multigraphs with n labeled edges.
Original entry on oeis.org
1, 1, 4, 23, 220, 3016, 55011, 1265824, 35496711, 1183686987, 46072834777, 2062557088117, 104926356851165, 6004962409831577, 383331023991407286, 27094756978689827593, 2107021273883402908850, 179261681391054814324774, 16602830645109035036038335
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
-
\\ R(n) is e.g.f. of 1,1,2,2,2,2,...; EnrichedGnSeq defined in A098620.
R(n)={2*exp(x + O(x*x^n)) - x - 1}
EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A099696
Consider the family of multigraphs enriched by the species of involutions. Sequence gives number of those multigraphs with n labeled edges.
Original entry on oeis.org
1, 1, 4, 25, 244, 3380, 62133, 1440382, 40673705, 1364815169, 53415511305, 2402797049419, 122751622204827, 7051227704802797, 451598420376965588, 32013004761567761223, 2495936511077175475140, 212840593118800653411004, 19753575434503894710824531
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A099700
Consider the family of multigraphs enriched by the species of simple graphs. Sequence gives number of those multigraphs with n labeled edges.
Original entry on oeis.org
1, 1, 4, 29, 330, 5438, 128211, 4808964, 378829853, 77137284917, 36854103598061, 36864364745783295, 74684573193253556537, 304187997559381840229969, 2484431769481244742219110666, 40639512967159110848931023115111, 1330529956364528398902155692019721596
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
-
\\ R(n) is A006125 as e.g.f.; EnrichedGnSeq defined in A098620.
R(n)={sum(k=0, n, 2^binomial(k,2)*x^k/k!) + O(x*x^n)}
EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A099704
Consider the family of multigraphs enriched by the species of directed graphs. Sequence gives number of those multigraphs with n labeled edges.
Original entry on oeis.org
1, 2, 24, 776, 79840, 35397440, 69619053504, 564929183555840, 18464894708236907776, 2418517115222622481308160, 1267747370909677813160722947072, 2658511777246500251150215101758228480, 22300872810108738542496498718468714032205824
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
-
\\ R(n) is A002416 as e.g.f.; EnrichedGnSeq defined in A098620.
R(n)={sum(k=0, n, 2^(k^2)*x^k/k!) + O(x*x^n)}
EnrichedGnSeq(R(15)) \\ Andrew Howroyd, Jan 12 2021
A099708
Consider the family of multigraphs enriched by the species of endofunctions. Sequence gives number of those multigraphs with n labeled edges.
Original entry on oeis.org
1, 1, 6, 60, 854, 16029, 378871, 10926690, 375538541, 15097900582, 699359781567, 36859422340308, 2187121403805853, 144804645827958839, 10615679263174481480, 856040905847508506792, 75495130803739278866508, 7244702305184037575057831, 753093536414613689614872227
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
Showing 1-10 of 12 results.