A098620
Consider the family of multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled edges.
Original entry on oeis.org
1, 1, 4, 26, 257, 3586, 66207, 1540693, 43659615, 1469677309, 57681784820, 2601121752854, 133170904684965, 7664254746784243, 491679121677763607, 34905596059311761907, 2725010800987216480527, 232643959843709167832482, 21613761720729431904201734
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
-
\\ here R(n) is A000110 as e.g.f.
egf1(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
EnrichedGnSeq(R)={my(n=serprec(R, x)-1, B=exp(x/2 + O(x*x^n))*subst(egf1(n), x, log(1+x + O(x*x^n))/2)); Vec(serlaplace(subst(B, x, R-polcoef(R,0))))}
R(n)={exp(exp(x + O(x*x^n))-1)}
EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A098623
Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled arcs.
Original entry on oeis.org
1, 1, 8, 109, 2229, 62684, 2289151, 104344153, 5767234550, 378073098155, 28888082263581, 2536660090249102, 253007765488793325, 28383529110762969901, 3551558435250676339536, 492092920443604792460905, 75025155137863150912784409, 12516480979952118669729618300
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
-
\\ here R(n) is A000110 as e.g.f.
egfA020556(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
EnrichedGdSeq(R)={my(n=serprec(R, x)-1, B=subst(egfA020556(n), x, log(1+x + O(x*x^n)))); Vec(serlaplace(subst(B, x, R-polcoef(R,0))))}
R(n)={exp(exp(x + O(x*x^n))-1)}
EnrichedGdSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A098626
Consider the family of directed multigraphs enriched by the species of derangements. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 0, 2, 4, 57, 348, 5235, 57930, 1037540, 16842496, 363889755, 7792175070, 201054289293, 5345844537876, 162234861271288, 5156725529935952, 181284205622239755, 6713109719185427600, 269652617328843102055, 11418447984579685481310, 517839485352765454438270
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A098630
Consider the family of directed multigraphs enriched by the species of parts. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 4, 60, 1624, 66240, 3711200, 269670208, 24435113216, 2682916389632, 349223324753408, 52965538033020928, 9229753832340117504, 1826647528631522463744, 406579171521484851396608, 100934277604965329345822720, 27746271707522968205726416896
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
-
a(n) = {2^n*sum(k=0, 2*n, stirling(2*n,k,2))} \\ Andrew Howroyd, Jan 12 2021
-
\\ R(n) is A000079 as e.g.f.; EnrichedGdlSeq defined in A098622.
R(n)={exp(2*x + O(x*x^n))}
EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A098638
Consider the family of directed multigraphs enriched by the species of odd sets. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 13, 164, 3127, 82600, 2845775, 122820136, 6446913953, 402413160952, 29343933156485, 2464029760993520, 235446319553848087, 25346231173047308256, 3047931031445529965527, 406412844141860523543392, 59704680455100785101683457, 9608818815170839730520275488
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
Missing a(10) inserted and terms a(13) and beyond from
Andrew Howroyd, Jan 12 2021
A099694
Consider the family of directed multigraphs enriched by the species of directed sets. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 17, 244, 5283, 156092, 5954547, 282221828, 16159327961, 1094056231572, 86116276633357, 7773114989571400, 795480206815177651, 91417037615848058160, 11701283925663217478843, 1656436690705751478232180, 257730676653629520748175377, 43837005194184348815823808500
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
-
\\ R(n) is e.g.f. of 1, 1, 2, 2, 2, ...; EnrichedGdlSeq defined in A098622.
R(n)={2*exp(x + O(x*x^n)) - x - 1}
EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A099698
Consider the family of directed multigraphs enriched by the species of involutions. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 17, 248, 5403, 160420, 6142567, 291996934, 16759322733, 1136940595762, 89641455771637, 8102778995663368, 830222723124364047, 95509354134959796556, 12236166882713532940611, 1733521075683722202738222, 269910543278748394820341769, 45936441912756036235229989058
Offset: 0
Dead sequence restored, corrected and extended by
Andrew Howroyd, Jan 12 2021
A099702
Consider the family of directed multigraphs enriched by the species of simple graphs. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 17, 256, 5719, 173446, 6768075, 328288840, 19468007553, 1458080017522, 183476204746761, 87209577493989776, 154656821805639801687, 617619828457724835488214, 5008102331929281541386123923, 81618549234469098721106601012472, 2666950050438611111026601803629686849
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
-
\\ R(n) is A006125 as e.g.f.; EnrichedGdlSeq defined in A098622.
R(n)={sum(k=0, n, 2^binomial(k, 2)*x^k/k!) + O(x*x^n)}
EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A099706
Consider the family of directed multigraphs enriched by the species of directed graphs. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 4, 84, 3568, 305712, 87782720, 144600947392, 1139235294403328, 37012349010095737088, 4840037457225169875031040, 2535930555678883610642223895552, 5317274645187046706095607711946092544, 44602319906972740832371696997145322907873280
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
-
\\ R(n) is A002416 as e.g.f.; EnrichedGdlSeq defined in A098622.
R(n)={sum(k=0, n, 2^(k^2)*x^k/k!) + O(x*x^n)}
EnrichedGdlSeq(R(15)) \\ Andrew Howroyd, Jan 12 2021
A099710
Consider the family of directed multigraphs enriched by the species of endofunctions. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 21, 372, 9503, 323528, 13976119, 740471952, 46918236113, 3486842393336, 299252510858253, 29285226572514608, 3233515108614711055, 399237909648934968160, 54699907257463871118015, 8261287679602024304387776, 1367355850924129919137226337, 246745297507913180076213875232
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
Showing 1-10 of 12 results.