cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A098620 Consider the family of multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 4, 26, 257, 3586, 66207, 1540693, 43659615, 1469677309, 57681784820, 2601121752854, 133170904684965, 7664254746784243, 491679121677763607, 34905596059311761907, 2725010800987216480527, 232643959843709167832482, 21613761720729431904201734
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ here R(n) is A000110 as e.g.f.
    egf1(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
    EnrichedGnSeq(R)={my(n=serprec(R, x)-1, B=exp(x/2 + O(x*x^n))*subst(egf1(n), x, log(1+x + O(x*x^n))/2)); Vec(serlaplace(subst(B, x, R-polcoef(R,0))))}
    R(n)={exp(exp(x + O(x*x^n))-1)}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A000110. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021

A098623 Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled arcs.

Original entry on oeis.org

1, 1, 8, 109, 2229, 62684, 2289151, 104344153, 5767234550, 378073098155, 28888082263581, 2536660090249102, 253007765488793325, 28383529110762969901, 3551558435250676339536, 492092920443604792460905, 75025155137863150912784409, 12516480979952118669729618300
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ here R(n) is A000110 as e.g.f.
    egfA020556(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
    EnrichedGdSeq(R)={my(n=serprec(R, x)-1, B=subst(egfA020556(n), x, log(1+x + O(x*x^n)))); Vec(serlaplace(subst(B, x, R-polcoef(R,0))))}
    R(n)={exp(exp(x + O(x*x^n))-1)}
    EnrichedGdSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014505 and 1 + R(x) is the e.g.f. of A000110. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021

A098626 Consider the family of directed multigraphs enriched by the species of derangements. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 0, 2, 4, 57, 348, 5235, 57930, 1037540, 16842496, 363889755, 7792175070, 201054289293, 5345844537876, 162234861271288, 5156725529935952, 181284205622239755, 6713109719185427600, 269652617328843102055, 11418447984579685481310, 517839485352765454438270
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000166 as e.g.f.; EnrichedGdlSeq defined in A098622.
    R(n)={exp(-x + O(x*x^n))/(1-x)}
    EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000166. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(14) and beyond from Andrew Howroyd, Jan 12 2021

A098630 Consider the family of directed multigraphs enriched by the species of parts. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 4, 60, 1624, 66240, 3711200, 269670208, 24435113216, 2682916389632, 349223324753408, 52965538033020928, 9229753832340117504, 1826647528631522463744, 406579171521484851396608, 100934277604965329345822720, 27746271707522968205726416896
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    a(n) = {2^n*sum(k=0, 2*n, stirling(2*n,k,2))} \\ Andrew Howroyd, Jan 12 2021
    
  • PARI
    \\ R(n) is A000079 as e.g.f.; EnrichedGdlSeq defined in A098622.
    R(n)={exp(2*x + O(x*x^n))}
    EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

a(n) = 2^n*Bell(2*n). - Vladeta Jovovic, Aug 22 2006
E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000079. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

A098638 Consider the family of directed multigraphs enriched by the species of odd sets. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 2, 13, 164, 3127, 82600, 2845775, 122820136, 6446913953, 402413160952, 29343933156485, 2464029760993520, 235446319553848087, 25346231173047308256, 3047931031445529965527, 406412844141860523543392, 59704680455100785101683457, 9608818815170839730520275488
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ EnrichedGdlSeq defined in A098622.
    EnrichedGdlSeq(sinh(x + O(x*x^20))) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: exp(-1)*Sum_{n>=0}(1+sinh(x))^(n^2)/n!. - Vladeta Jovovic, Mar 04 2008
E.g.f.: B(sinh(x)) where B(x) is the e.g.f. of A014507. - Andrew Howroyd, Jan 12 2021

Extensions

Missing a(10) inserted and terms a(13) and beyond from Andrew Howroyd, Jan 12 2021

A099694 Consider the family of directed multigraphs enriched by the species of directed sets. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 2, 17, 244, 5283, 156092, 5954547, 282221828, 16159327961, 1094056231572, 86116276633357, 7773114989571400, 795480206815177651, 91417037615848058160, 11701283925663217478843, 1656436690705751478232180, 257730676653629520748175377, 43837005194184348815823808500
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is e.g.f. of 1, 1, 2, 2, 2, ...; EnrichedGdlSeq defined in A098622.
    R(n)={2*exp(x + O(x*x^n)) - x - 1}
    EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(2*exp(x) - x - 2) where B(x) is the e.g.f. of A014507. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

A099698 Consider the family of directed multigraphs enriched by the species of involutions. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 2, 17, 248, 5403, 160420, 6142567, 291996934, 16759322733, 1136940595762, 89641455771637, 8102778995663368, 830222723124364047, 95509354134959796556, 12236166882713532940611, 1733521075683722202738222, 269910543278748394820341769, 45936441912756036235229989058
Offset: 0

Views

Author

N. J. A. Sloane, Jun 25 2017

Keywords

Crossrefs

Programs

  • PARI
    \\ R(n) is A000085 as e.g.f.; EnrichedGdlSeq defined in A098622.
    R(n)={exp(x+x^2/2 + O(x*x^n))}
    EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000085. - Andrew Howroyd, Jan 12 2021

Extensions

Dead sequence restored, corrected and extended by Andrew Howroyd, Jan 12 2021

A099702 Consider the family of directed multigraphs enriched by the species of simple graphs. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 2, 17, 256, 5719, 173446, 6768075, 328288840, 19468007553, 1458080017522, 183476204746761, 87209577493989776, 154656821805639801687, 617619828457724835488214, 5008102331929281541386123923, 81618549234469098721106601012472, 2666950050438611111026601803629686849
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A006125 as e.g.f.; EnrichedGdlSeq defined in A098622.
    R(n)={sum(k=0, n, 2^binomial(k, 2)*x^k/k!) + O(x*x^n)}
    EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A006125. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021

A099706 Consider the family of directed multigraphs enriched by the species of directed graphs. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 4, 84, 3568, 305712, 87782720, 144600947392, 1139235294403328, 37012349010095737088, 4840037457225169875031040, 2535930555678883610642223895552, 5317274645187046706095607711946092544, 44602319906972740832371696997145322907873280
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A002416 as e.g.f.; EnrichedGdlSeq defined in A098622.
    R(n)={sum(k=0, n, 2^(k^2)*x^k/k!) + O(x*x^n)}
    EnrichedGdlSeq(R(15)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A002416. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 12 2021

A099710 Consider the family of directed multigraphs enriched by the species of endofunctions. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 2, 21, 372, 9503, 323528, 13976119, 740471952, 46918236113, 3486842393336, 299252510858253, 29285226572514608, 3233515108614711055, 399237909648934968160, 54699907257463871118015, 8261287679602024304387776, 1367355850924129919137226337, 246745297507913180076213875232
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000312 as e.g.f.; EnrichedGdlSeq defined in A098622.
    R(n)={1/(1 + lambertw(-x + O(x*x^n)))}
    EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000312. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021
Showing 1-10 of 12 results. Next