cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098636 Consider the family of multigraphs enriched by the species of odd sets. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 2, 10, 78, 885, 13487, 261848, 6255453, 179297990, 6046396379, 236175330388, 10549286540957, 533103416306743, 30203144498636380, 1903491404510540902, 132543022174482851436, 10136316177816553484295, 846893706267135762556915, 76941424170126460702604994
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ EnrichedGnSeq defined in A098620.
    EnrichedGnSeq(sinh(x + O(x*x^20))) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(sinh(x)) where B(x) is the e.g.f. of A014500. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021

A098639 Consider the family of directed multigraphs enriched by the species of odd sets. Sequence gives number of those multigraphs with n labeled arcs.

Original entry on oeis.org

1, 1, 6, 69, 1230, 30663, 1005692, 41571127, 2099861244, 126607647073, 8945129371976, 729628409684925, 67868881258920424, 7125522244948969319, 837004398237510194704, 109173596976047915341823, 15708090522743045757716496, 2478722722731315203268137729
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ EnrichedGdSeq defined in A098623.
    EnrichedGdSeq(sinh(x + O(x*x^20))) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(sinh(x)) where B(x) is the e.g.f. of A014505. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021
Showing 1-2 of 2 results.