cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A099692 Consider the family of multigraphs enriched by the species of directed sets. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 1, 4, 23, 220, 3016, 55011, 1265824, 35496711, 1183686987, 46072834777, 2062557088117, 104926356851165, 6004962409831577, 383331023991407286, 27094756978689827593, 2107021273883402908850, 179261681391054814324774, 16602830645109035036038335
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is e.g.f. of 1,1,2,2,2,2,...; EnrichedGnSeq defined in A098620.
    R(n)={2*exp(x + O(x*x^n)) - x - 1}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(2*exp(x) - x - 2) where B(x) is the e.g.f. of A014500. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

A099695 Consider the family of directed multigraphs enriched by the species of directed sets. Sequence gives number of those multigraphs with n labeled arcs.

Original entry on oeis.org

1, 1, 8, 106, 2144, 59844, 2173450, 98648246, 5433864078, 355229741266, 27080154837658, 2373310690810690, 236327564463489838, 26475199136060717618, 3308794737926514931894, 457980967372496137472590, 69761664006643652403884218, 11629282648335699139979015070
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is e.g.f. of 1, 1, 2, 2, 2, ...; EnrichedGdSeq defined in A098623.
    R(n)={2*exp(x + O(x*x^n)) - x - 1}
    EnrichedGdSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(2*exp(x) - x - 2) where B(x) is the e.g.f. of A014505. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021
Showing 1-2 of 2 results.