A098620
Consider the family of multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled edges.
Original entry on oeis.org
1, 1, 4, 26, 257, 3586, 66207, 1540693, 43659615, 1469677309, 57681784820, 2601121752854, 133170904684965, 7664254746784243, 491679121677763607, 34905596059311761907, 2725010800987216480527, 232643959843709167832482, 21613761720729431904201734
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
-
\\ here R(n) is A000110 as e.g.f.
egf1(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
EnrichedGnSeq(R)={my(n=serprec(R, x)-1, B=exp(x/2 + O(x*x^n))*subst(egf1(n), x, log(1+x + O(x*x^n))/2)); Vec(serlaplace(subst(B, x, R-polcoef(R,0))))}
R(n)={exp(exp(x + O(x*x^n))-1)}
EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A098622
Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 17, 250, 5465, 162677, 6241059, 297132409, 17075153860, 1159545515804, 91501467848088, 8276847825732141, 848577193578286942, 97672164219292005480, 12518933902769241287267, 1774279753092963892540493, 276351502436571180980604240, 47046745370508674770872396843
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
-
\\ here R(n) is A000110 as e.g.f.
egfA014507(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, stirling(i,k,1)*polcoef(bell, 2*k))*x^i/i!) + O(x*x^n)}
EnrichedGdlSeq(R)={my(n=serprec(R, x)-1); Vec(serlaplace(subst(egfA014507(n), x, R-polcoef(R,0))))}
R(n)={exp(exp(x + O(x*x^n))-1)}
EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A098627
Consider the family of directed multigraphs enriched by the species of derangements. Sequence gives number of those multigraphs with n labeled arcs.
Original entry on oeis.org
1, 0, 1, 2, 27, 164, 2335, 25458, 437241, 6965112, 145640817, 3057675290, 76814951587, 2003471245164, 59438049704943, 1855131250113498, 63937099992148785, 2327591284996635888, 91854272591000172321, 3828194864278619367474, 170846746588575658999147
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A098631
Consider the family of directed multigraphs enriched by the species of parts. Sequence gives number of those multigraphs with n labeled arcs.
Original entry on oeis.org
1, 2, 28, 696, 26512, 1402656, 97017792, 8418174848, 889241719040, 111774837350912, 16420543334734848, 2778708477919836160, 535183812199464341504, 116142946557502449852416, 28156854547845767203373056, 7569375509914847295271043072, 2241898693518356603925445017600
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A098639
Consider the family of directed multigraphs enriched by the species of odd sets. Sequence gives number of those multigraphs with n labeled arcs.
Original entry on oeis.org
1, 1, 6, 69, 1230, 30663, 1005692, 41571127, 2099861244, 126607647073, 8945129371976, 729628409684925, 67868881258920424, 7125522244948969319, 837004398237510194704, 109173596976047915341823, 15708090522743045757716496, 2478722722731315203268137729
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A099695
Consider the family of directed multigraphs enriched by the species of directed sets. Sequence gives number of those multigraphs with n labeled arcs.
Original entry on oeis.org
1, 1, 8, 106, 2144, 59844, 2173450, 98648246, 5433864078, 355229741266, 27080154837658, 2373310690810690, 236327564463489838, 26475199136060717618, 3308794737926514931894, 457980967372496137472590, 69761664006643652403884218, 11629282648335699139979015070
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
-
\\ R(n) is e.g.f. of 1, 1, 2, 2, 2, ...; EnrichedGdSeq defined in A098623.
R(n)={2*exp(x + O(x*x^n)) - x - 1}
EnrichedGdSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A099699
Consider the family of directed multigraphs enriched by the species of involutions. Sequence gives number of those multigraphs with n labeled arcs.
Original entry on oeis.org
1, 1, 8, 108, 2200, 61708, 2249268, 102377404, 5651999688, 370171228504, 28262385542832, 2480108374814480, 247231765611893504, 27722619251007202720, 3467475213036160205984, 480277499859342401636704, 73202023124111697153718080, 12209186681659842887207280448
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
Showing 1-7 of 7 results.