cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098624 Consider the family of multigraphs enriched by the species of derangements. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 0, 1, 2, 15, 84, 750, 6852, 79639, 1006184, 14875218, 241078100, 4392257716, 87279581232, 1905609327583, 45008114794874, 1150897256534370, 31580332783936416, 928535967078634497, 29090873853321687666, 969132936087009709174, 34198721664081728281400
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000166 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={exp(-x + O(x*x^n))/(1-x)}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A000166. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(14) and beyond from Andrew Howroyd, Jan 12 2021

A098626 Consider the family of directed multigraphs enriched by the species of derangements. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 0, 2, 4, 57, 348, 5235, 57930, 1037540, 16842496, 363889755, 7792175070, 201054289293, 5345844537876, 162234861271288, 5156725529935952, 181284205622239755, 6713109719185427600, 269652617328843102055, 11418447984579685481310, 517839485352765454438270
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000166 as e.g.f.; EnrichedGdlSeq defined in A098622.
    R(n)={exp(-x + O(x*x^n))/(1-x)}
    EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000166. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(14) and beyond from Andrew Howroyd, Jan 12 2021
Showing 1-2 of 2 results.