cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098628 Consider the family of multigraphs enriched by the species of parts. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 2, 12, 128, 2224, 56000, 1880832, 79985792, 4161468928, 258415579648, 18793653411840, 1576791247634432, 150745211441983488, 16253127712884269056, 1959064946185017851904, 262002352633857351942144, 38624060984664180255621120, 6240304185636529522872025088
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000079 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={exp(2*x + O(x*x^n))}
    EnrichedGnSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A000079. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021

A098631 Consider the family of directed multigraphs enriched by the species of parts. Sequence gives number of those multigraphs with n labeled arcs.

Original entry on oeis.org

1, 2, 28, 696, 26512, 1402656, 97017792, 8418174848, 889241719040, 111774837350912, 16420543334734848, 2778708477919836160, 535183812199464341504, 116142946557502449852416, 28156854547845767203373056, 7569375509914847295271043072, 2241898693518356603925445017600
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000079 as e.g.f.; EnrichedGdSeq defined in A098623.
    R(n)={exp(2*x + O(x*x^n))}
    EnrichedGdSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

a(n) = 2^n*A020556(n). - Vladeta Jovovic, Aug 11 2005
E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014505 and 1 + R(x) is the e.g.f. of A000079. - Andrew Howroyd, Jan 12 2021

Extensions

More terms from Vladeta Jovovic, Aug 11 2005
Terms a(14) and beyond from Andrew Howroyd, Jan 12 2021
Showing 1-2 of 2 results.