cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A099698 Consider the family of directed multigraphs enriched by the species of involutions. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 2, 17, 248, 5403, 160420, 6142567, 291996934, 16759322733, 1136940595762, 89641455771637, 8102778995663368, 830222723124364047, 95509354134959796556, 12236166882713532940611, 1733521075683722202738222, 269910543278748394820341769, 45936441912756036235229989058
Offset: 0

Views

Author

N. J. A. Sloane, Jun 25 2017

Keywords

Crossrefs

Programs

  • PARI
    \\ R(n) is A000085 as e.g.f.; EnrichedGdlSeq defined in A098622.
    R(n)={exp(x+x^2/2 + O(x*x^n))}
    EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000085. - Andrew Howroyd, Jan 12 2021

Extensions

Dead sequence restored, corrected and extended by Andrew Howroyd, Jan 12 2021

A099699 Consider the family of directed multigraphs enriched by the species of involutions. Sequence gives number of those multigraphs with n labeled arcs.

Original entry on oeis.org

1, 1, 8, 108, 2200, 61708, 2249268, 102377404, 5651999688, 370171228504, 28262385542832, 2480108374814480, 247231765611893504, 27722619251007202720, 3467475213036160205984, 480277499859342401636704, 73202023124111697153718080, 12209186681659842887207280448
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A000085 as e.g.f.; EnrichedGdSeq defined in A098623.
    R(n)={exp(x+x^2/2 + O(x*x^n))}
    EnrichedGdSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014505 and 1 + R(x) is the e.g.f. of A000085. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 12 2021
Showing 1-2 of 2 results.