cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A217900 O.g.f.: Sum_{n>=0} n^n * (n+1)^(n-1) * exp(-n*(n+1)*x) * x^n / n!.

Original entry on oeis.org

1, 1, 4, 38, 576, 12052, 322848, 10564304, 408903680, 18288706544, 928575662400, 52780935007968, 3321208845997056, 229232635832433664, 17221699990084108288, 1399139700462119135232, 122235936429355565580288, 11428226675376971405577984, 1138551595285580854471388160
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} (n+1)^(n-1) * exp(-(n+1)*x) * x^n/n!.
More generally, if we define a(n) for fixed integers m, t, and s>=0, by:
(0) Sum_{n>=0} m * n^(s*n) * (n*t+m)^(n-1) * exp(-n^s*(n*t+m)*x) * x^n/n! = Sum_{n>=0} a(n)*x^n
then the coefficients a(n) are integral and may be expressed by:
(1) a(n) = 1/n! * Sum_{k=0..n} m*(-1)^(n-k)*binomial(n,k) * k^(s*n) * (k*t+m)^(n-1).
(2) a(n) = 1/n! * [x^n] Sum_{k>=0} m*k^(s*k)*(k*t+m)^(k-1)*x^k / (1 + k^s*(k*t+m)*x)^(k+1).
(3) a(n) = 1/t^((s-1)*n) * [x^(s*n)] 1 + m*x*(1+m*x)^(n-1) / Product_{k=1..n} (1-k*t*x).
(4) a(n) = 1/t^((s-1)*n) * [x^(s*n)] 1 + m*x*(1-m*x)^(s*n) / Product_{k=1..n} (1-(k*t+m)*x).

Examples

			O.g.f.: A(x) = 1 + x + 4*x^2 + 38*x^3 + 576*x^4 + 12052*x^5 + 322848*x^6 +...
where
A(x) = 1 + 1^1*2^0*x*exp(-1*2*x) + 2^2*3^1*exp(-2*3*x)*x^2/2! + 3^3*4^2*exp(-3*4*x)*x^3/3! + 4^4*5^3*exp(-4*5*x)*x^4/4! + 5^5*6^4*exp(-5*6*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/n!*Sum[(-1)^(n-k)*Binomial[n, k]*k^n*(k+1)^(n-1), {k, 0, n}]; a[0]=1; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*(m+1)^(m-1)*x^m*exp(-m*(m+1)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, k^k*(k+1)^(k-1)*x^k/(1+k*(k+1)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^n*(k+1)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+x*(1+x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+x*(1-x)^n/prod(k=0, n, 1-(k+1)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n)=if(n==0,1,sum(k=0,n-1, binomial(n-1,k) * Stirling2(2*n-k-1,n)))} \\ Paul D. Hanna, Nov 13 2012
    /* PARI Programs for the General Case (START) ...................... */
    
  • PARI
    {a(n,m=1,t=1,s=1)=polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*exp(-k^s*(t*k+m)*x+x*O(x^n))*x^k/k!), n)}
    
  • PARI
    {a(n,m=1,t=1,s=1)=(1/n!)*polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*x^k/(1+k^s*(t*k+m)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n,m=1,t=1,s=1)=1/n!*sum(k=0, n, m*(-1)^(n-k)*binomial(n, k)*k^(s*n)*(t*k+m)^(n-1))}
    
  • PARI
    {a(n,m=1,t=1,s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1+m*x)^(n-1)/prod(k=0, n, 1-t*k*x +x*O(x^(s*n))), s*n)}
    
  • PARI
    {a(n,m=1,t=1,s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1-m*x)^(s*n)/prod(k=0, n, 1-(t*k+m)*x +x*O(x^(s*n))), s*n)}
    /* (END) ........................................................... */

Formula

a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * k^n * (k+1)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} k^k*(k+1)^(k-1)*x^k / (1 + k*(k+1)*x)^(k+1).
a(n) = [x^n] 1 + x*(1+x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + x*(1-x)^(n-1) / Product_{k=1..n} (1-(k+1)*x).
a(n) = A078739(n,n) for n>=1.
a(n) = Sum_{k=0..n-1} binomial(n-1,k) * Stirling2(2*n-k-1,n) for n>0, where Stirling2(n,k) = A008277(n,k). - Paul D. Hanna, Nov 13 2012
a(n) ~ 2^(2*n-1) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, May 09 2014

A201595 E.g.f. satisfies A(x) = exp(x*A(x)) * cosh(x*A(x)).

Original entry on oeis.org

1, 1, 4, 28, 288, 3936, 67328, 1385728, 33372160, 921118720, 28677169152, 994360565760, 38007586684928, 1587878686621696, 71990467473965056, 3520403893852831744, 184707311409882464256, 10350444842488122310656, 616975843658373414256640, 38981881007475178476666880
Offset: 0

Views

Author

Paul D. Hanna, Dec 03 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 28*x^3/3! + 288*x^4/4! + 3936*x^5/5! +...
The coefficients of x^n/n! in initial powers of G(x) = (1 + exp(2*x))/2 begin:
G^1: [(1), 1, 2, 4, 8, 16, 32, 64, 128, ...];
G^2: [1,(2), 6, 20, 72, 272, 1056, 4160, ...];
G^3: [1, 3,(12), 54, 264, 1368, 7392, 41184, ...];
G^4: [1, 4, 20,(112), 680, 4384, 29600, 207232, ...];
G^5: [1, 5, 30, 200,(1440), 11000, 88080, 732800, ...];
G^6: [1, 6, 42, 324, 2688,(23616), 217392, 2080224, ...];
G^7: [1, 7, 56, 490, 4592, 45472,(471296), 5076400, ...];
G^8: [1, 8, 72, 704, 7344, 80768, 928512,(11085824), ...]; ...
where coefficients in parenthesis form initial terms of this sequence:
[1/1, 2/2, 12/3, 112/4, 1440/5, 23616/6, 471296/7, 11085824/8, ...].
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[Binomial[n+1,k] k^n/(n+1),{k,0,n+1}]/2,{n,20}]] (* Harvey P. Dale, Feb 04 2012 *)
    CoefficientList[Series[(x-LambertW[-x*E^x])/(2*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 04 2012 *)
  • PARI
    a(n)=n!*polcoeff(1/x*serreverse(x*exp(-x+x^2*O(x^n))/cosh(x+x^2*O(x^n))),n)
    
  • PARI
    a(n)=local(X=x+x*O(x^n));n!*polcoeff(exp((n+1)*X)*cosh(X)^(n+1)/(n+1),n)
    
  • PARI
    a(n)=sum(k=0,n+1,binomial(n+1,k)*k^n/(n+1)/2)
    
  • PARI
    /* Formula for a(n,m) where A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!: */
    {a(n,m=1)=sum(k=0, n+m, binomial(n+m, k)*k^n*m/(n+m)/2^m)}
    
  • PARI
    /* Formula derived from a LambertW identity: */
    {a(n)=local(A=sum(k=0,n,(k+1)^(k-1)*cosh((k+1)*x+x*O(x^n))*x^k/k!));n!*polcoeff(A,n)}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Oct 24 2012
    
  • PARI
    /* Formula derived from a LambertW identity: */
    {a(n)=local(A=1+sum(k=1,n,k^k*sinh(k*x+x^2*O(x^n))/(k*x)*x^k/k!));n!*polcoeff(A,n)}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Nov 20 2012

Formula

a(n) = (1/2) * Sum_{k=0..n+1} C(n+1,k) * k^n / (n+1).
a(n) = [x^n/n!] exp((n+1)*x) * cosh(x)^(n+1) / (n+1).
E.g.f. A(x) satisfies:
(1) A( x*exp(-x)/cosh(x) ) = exp(x)*cosh(x).
(2) A(x) = (1/x)*Series_Reversion( x*exp(-x)/cosh(x) ).
(3) A(x) = (1 + exp(2*x*A(x)))/2.
(4) A(x) = exp(G(x)) where G(x) is the e.g.f. of A074932.
(5) A(x) = Sum_{n>=0} (n+1)^(n-1) * cosh((n+1)*x) * x^n/n!. - Paul D. Hanna, Oct 24 2012
(6) A(x) = 1 + Sum_{n>=1} n^n * sinh(n*x)/(n*x) * x^n/n!. - Paul D. Hanna, Nov 20 2012
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! then
a(n,m) = Sum_{k=0..n+m} C(n+m, k) * k^n * m/(n+m) / 2^m.
a(n) = A214225(n+1)/(n+1).
E.g.f.: (x-LambertW(-x*exp(x)))/(2*x). - Vaclav Kotesovec, Dec 04 2012
a(n) ~ n!*sqrt(LambertW(exp(-1))+1)/(2*sqrt(2*Pi)*n^(3/2)*LambertW(exp(-1))^(n+1)). - Vaclav Kotesovec, Dec 04 2012
G.f.: 1/2 + 1/2 * Sum_{k>=0} (k+1)^(k-1) * x^k/(1 - (k+1)*x)^(k+1). - Seiichi Manyama, Apr 23 2024
a(n) = n! * Sum_{k=0..n} 2^(n-k) * Stirling2(n,k)/(n-k+1)!. - Seiichi Manyama, Nov 07 2024

A202357 Decimal expansion of the number x satisfying e*x = e^(-x).

Original entry on oeis.org

2, 7, 8, 4, 6, 4, 5, 4, 2, 7, 6, 1, 0, 7, 3, 7, 9, 5, 1, 0, 9, 3, 5, 8, 7, 3, 9, 0, 2, 2, 9, 8, 0, 1, 5, 5, 4, 3, 9, 4, 7, 7, 4, 8, 8, 6, 1, 9, 7, 4, 5, 7, 6, 5, 4, 5, 3, 1, 7, 8, 1, 0, 5, 5, 3, 5, 0, 2, 9, 3, 7, 5, 4, 5, 9, 9, 4, 9, 8, 9, 8, 1, 9, 2, 0, 4, 9, 8, 4, 2, 8, 1, 1, 2, 9, 9, 4, 2, 8
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2011

Keywords

Comments

See A202322 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.2784645427610737951093587390229801554394774886...
		

References

  • Heine Halberstam and Hans Egon-Richert, Sieve Methods, Dover Publications (2011). See Theorem 2.1.

Crossrefs

Programs

  • Mathematica
    u = E; v = 0;
    f[x_] := u*x + v; g[x_] := E^-x
    Plot[{f[x], g[x]}, {x, 0, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .27, .28}, WorkingPrecision -> 110]
    RealDigits[r]  (* A202357 *)
    RealDigits[ ProductLog[1/E], 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
    RealDigits[LambertW[Exp[-1]],10,120][[1]] (* Harvey P. Dale, Dec 24 2019 *)
  • PARI
    lambertw(exp(-1)) \\ Michel Marcus, Mar 21 2016

Formula

The constant in A202355 minus 1. - R. J. Mathar, Dec 21 2011
1+x+log(x)=0. - R. J. Mathar, Nov 02 2012
Equals LambertW(exp(-1)). - Vaclav Kotesovec, Jan 10 2014

A218301 E.g.f. A(x) satisfies A( x/(exp(x)*cosh(x)) ) = exp(3*x)*cosh(3*x).

Original entry on oeis.org

1, 3, 24, 252, 3360, 55008, 1074816, 24499968, 639744000, 18856765440, 619897847808, 22502300590080, 894419152404480, 38651030120693760, 1804765006764441600, 90574514900736933888, 4862862027933962207232, 278158492957848901779456, 16889663645642083220324352
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2012

Keywords

Comments

More generally, if A( x/(exp(t*x)*cosh(t*x)) ) = exp(m*x)*cosh(m*x),
then A(x) = Sum_{n>=0} m*(n*t+m)^(n-1) * cosh((n*t+m)*x) * x^n/n!.

Examples

			E.g.f.: A(x) = 1 + 3*x + 24*x^2/2! + 252*x^3/3! + 3360*x^4/4! + 55008*x^5/5! +...
where
A(x) = cosh(3*x) + 3*4^0*cosh(4*x)*x + 3*5^1*cosh(5*x)*x^2/2! + 3*6^2*cosh(6*x)*x^3/3! + 3*7^3*cosh(7*x)*x^4/4! + 3*8^4*cosh(8*x)*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(Egf=1,X=x+x*O(x^n),R=serreverse(x/(exp(X)*cosh(X)))); Egf=exp(3*R)*cosh(3*R); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula derived from a LambertW identity: */
    {a(n)=local(Egf=1,X=x+x*O(x^n)); Egf=sum(k=0,n,3*(k+3)^(k-1)*cosh((k+3)*X)*x^k/k!); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f.: A(x) = Sum_{n>=0} 3*(n+3)^(n-1) * cosh((n+3)*x) * x^n/n!.
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( 3*x - 3*LambertW(-x * exp(x)) ).
a(n) = 3/2 * Sum_{k=0..n} (k+3)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + 3/2 * Sum_{k>=0} (k+3)^(k-1) * x^k/(1 - (k+3)*x)^(k+1). (End)

A218302 E.g.f. A(x) satisfies A( x/(exp(x)*cosh(x)) ) = exp(4*x)*cosh(4*x).

Original entry on oeis.org

1, 4, 40, 496, 7488, 134784, 2836736, 68635648, 1881948160, 57777184768, 1965962575872, 73503311167488, 2997314388623360, 132455836580577280, 6308164435588415488, 322185156718017642496, 17571327124936467677184, 1019377026461494381903872
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2012

Keywords

Comments

More generally, if A( x/(exp(t*x)*cosh(t*x)) ) = exp(m*x)*cosh(m*x),
then A(x) = Sum_{n>=0} m*(n*t+m)^(n-1) * cosh((n*t+m)*x) * x^n/n!.

Examples

			E.g.f.: A(x) = 1 + 4*x + 40*x^2/2! + 496*x^3/3! + 7488*x^4/4! +...
where
A(x) = cosh(4*x) + 4*5^0*cosh(5*x)*x + 4*6^1*cosh(6*x)*x^2/2! + 4*7^2*cosh(7*x)*x^3/3! + 4*8^3*cosh(8*x)*x^4/4! + 4*9^4*cosh(9*x)*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(Egf=1,X=x+x*O(x^n),R=serreverse(x/(exp(X)*cosh(X)))); Egf=exp(4*R)*cosh(4*R); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula derived from a LambertW identity: */
    {a(n)=local(Egf=1,X=x+x*O(x^n)); Egf=sum(k=0,n,4*(k+4)^(k-1)*cosh((k+4)*X)*x^k/k!); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f.: A(x) = Sum_{n>=0} 4*(n+4)^(n-1) * cosh((n+4)*x) * x^n/n!.
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( 4*x - 4*LambertW(-x * exp(x)) ).
a(n) = 2 * Sum_{k=0..n} (k+4)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + 2 * Sum_{k>=0} (k+4)^(k-1) * x^k/(1 - (k+4)*x)^(k+1). (End)

A218303 E.g.f. A(x) satisfies A( x/(exp(2*x)*cosh(2*x)) ) = exp(x)*cosh(x).

Original entry on oeis.org

1, 1, 6, 76, 1480, 39056, 1303904, 52716224, 2504292480, 136741146880, 8439125550592, 580959483530240, 44138582550333440, 3668643339883089920, 331143571990522060800, 32258185015683531587584, 3373221864252806213435392, 376881845889001869159759872
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2012

Keywords

Comments

More generally, if A( x/(exp(t*x)*cosh(t*x)) ) = exp(m*x)*cosh(m*x),
then A(x) = Sum_{n>=0} m*(n*t+m)^(n-1) * cosh((n*t+m)*x) * x^n/n!.

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 76*x^3/3! + 1480*x^4/4! + 39056*x^5/5! +...
where
A(x) = cosh(x) + 3^0*cosh(3*x)*x + 5^1*cosh(5*x)*x^2/2! + 7^2*cosh(7*x)*x^3/3! + 9^3*cosh(9*x)*x^4/4! + 11^4*cosh(11*x)*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(Egf=1,X=x+x*O(x^n),R=serreverse(x/(exp(2*X)*cosh(2*X)))); Egf=exp(R)*cosh(R); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula derived from a LambertW identity: */
    {a(n)=local(Egf=1,X=x+x*O(x^n)); Egf=sum(k=0,n,(2*k+1)^(k-1)*cosh((2*k+1)*X)*x^k/k!); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f.: A(x) = Sum_{n>=0} (2*n+1)^(n-1) * cosh((2*n+1)*x) * x^n/n!.
a(n) ~ c * 2^n * n^(n-1) / (exp(n) * (LambertW(exp(-1)))^n), where c = sqrt(1 + LambertW(exp(-1)))/(4*sqrt(LambertW(exp(-1)))) = 0.535672560704567808218663129282561449... . - Vaclav Kotesovec, Jul 13 2014, updated Jun 10 2019
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( x - 1/2 * LambertW(-2*x * exp(2*x)) ).
a(n) = 1/2 * Sum_{k=0..n} (2*k+1)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + 1/2 * Sum_{k>=0} (2*k+1)^(k-1) * x^k/(1 - (2*k+1)*x)^(k+1). (End)

A218304 E.g.f. A(x) satisfies A( x/(exp(2*x)*cosh(2*x)) ) = exp(3*x)*cosh(3*x).

Original entry on oeis.org

1, 3, 30, 468, 10248, 291888, 10282464, 432631104, 21195292800, 1186054914816, 74676568432128, 5226914768016384, 402722750814750720, 33876716756962652160, 3089713688099323502592, 303723970839738425622528, 32015024916407062538256384
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2012

Keywords

Comments

More generally, if A( x/(exp(t*x)*cosh(t*x)) ) = exp(m*x)*cosh(m*x),
then A(x) = Sum_{n>=0} m*(n*t+m)^(n-1) * cosh((n*t+m)*x) * x^n/n!.

Examples

			E.g.f.: A(x) = 1 + 3*x + 30*x^2/2! + 468*x^3/3! + 10248*x^4/4! + 291888*x^5/5! +...
where
A(x) = cosh(3*x) + 3*5^0*cosh(5*x)*x + 3*7^1*cosh(7*x)*x^2/2! + 3*9^2*cosh(9*x)*x^3/3! + 3*11^3*cosh(11*x)*x^4/4! + 3*13^4*cosh(13*x)*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(Egf=1,X=x+x*O(x^n),R=serreverse(x/(exp(2*X)*cosh(2*X)))); Egf=exp(3*R)*cosh(3*R); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula derived from a LambertW identity: */
    {a(n)=local(Egf=1,X=x+x*O(x^n)); Egf=sum(k=0,n,3*(2*k+3)^(k-1)*cosh((2*k+3)*X)*x^k/k!); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f.: A(x) = Sum_{n>=0} 3*(2*n+3)^(n-1) * cosh((2*n+3)*x) * x^n/n!.
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( 3*x - 3/2 * LambertW(-2*x * exp(2*x)) ).
a(n) = 3/2 * Sum_{k=0..n} (2*k+3)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + 3/2 * Sum_{k>=0} (2*k+3)^(k-1) * x^k/(1 - (2*k+3)*x)^(k+1). (End)

A218305 E.g.f. A(x) satisfies A( x/(exp(3*x)*cosh(3*x)) ) = exp(x)*cosh(x).

Original entry on oeis.org

1, 1, 8, 148, 4256, 166816, 8297600, 500730112, 35547379712, 2902899914752, 268094176428032, 27629598827044864, 3143573312615481344, 391375817676973932544, 52926434374336385122304, 7725597721066205089890304, 1210677595048894480252928000
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2012

Keywords

Comments

More generally, if A( x/(exp(t*x)*cosh(t*x)) ) = exp(m*x)*cosh(m*x),
then A(x) = Sum_{n>=0} m*(n*t+m)^(n-1) * cosh((n*t+m)*x) * x^n/n!.

Examples

			E.g.f.: A(x) = 1 + x + 8*x^2/2! + 148*x^3/3! + 4256*x^4/4! + 166816*x^5/5! +...
where
A(x) = cosh(x) + 4^0*cosh(4*x)*x + 7^1*cosh(7*x)*x^2/2! + 10^2*cosh(10*x)*x^3/3! + 13^3*cosh(13*x)*x^4/4! + 16^4*cosh(16*x)*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(Egf=1,X=x+x*O(x^n),R=serreverse(x/(exp(3*X)*cosh(3*X)))); Egf=exp(R)*cosh(R); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula derived from a LambertW identity: */
    {a(n)=local(Egf=1,X=x+x*O(x^n)); Egf=sum(k=0,n,(3*k+1)^(k-1)*cosh((3*k+1)*X)*x^k/k!); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f.: A(x) = Sum_{n>=0} (3*n+1)^(n-1) * cosh((3*n+1)*x) * x^n/n!.
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( x - 1/3 * LambertW(-3*x * exp(3*x)) ).
a(n) = 1/2 * Sum_{k=0..n} (3*k+1)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + 1/2 * Sum_{k>=0} (3*k+1)^(k-1) * x^k/(1 - (3*k+1)*x)^(k+1). (End)

A218306 E.g.f. A(x) satisfies A( x/(exp(3*x)*cosh(3*x)) ) = exp(2*x)*cosh(2*x).

Original entry on oeis.org

1, 2, 20, 392, 11648, 466112, 23517824, 1434077696, 102618951680, 8432793964544, 782753794531328, 81007725700038656, 9249066952457584640, 1154952975718091325440, 156588371428134115868672, 22908199202756436344963072, 3597006040171205977538822144
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2012

Keywords

Comments

More generally, if A( x/(exp(t*x)*cosh(t*x)) ) = exp(m*x)*cosh(m*x), then A(x) = Sum_{n>=0} m*(n*t+m)^(n-1) * cosh((n*t+m)*x) * x^n/n!.

Examples

			E.g.f.: A(x) = 1 + 2*x + 20*x^2/2! + 392*x^3/3! + 11648*x^4/4! + 466112*x^5/5! +...
where
A(x) = cosh(2*x) + 2*5^0*cosh(5*x)*x + 2*8^1*cosh(8*x)*x^2/2! + 2*11^2*cosh(11*x)*x^3/3! + 2*14^3*cosh(14*x)*x^4/4! + 2*17^4*cosh(17*x)*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(Egf=1,X=x+x*O(x^n),R=serreverse(x/(exp(3*X)*cosh(3*X)))); Egf=exp(2*R)*cosh(2*R); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula derived from a LambertW identity: */
    {a(n)=local(Egf=1,X=x+x*O(x^n)); Egf=sum(k=0,n,2*(3*k+2)^(k-1)*cosh((3*k+2)*X)*x^k/k!); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f.: A(x) = Sum_{n>=0} 2*(3*n+2)^(n-1) * cosh((3*n+2)*x) * x^n/n!.
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( 2*x - 2/3 * LambertW(-3*x * exp(3*x)) ).
a(n) = Sum_{k=0..n} (3*k+2)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + Sum_{k>=0} (3*k+2)^(k-1) * x^k/(1 - (3*k+2)*x)^(k+1). (End)

A218307 E.g.f. A(x) satisfies A( x/(exp(4*x)*cosh(4*x)) ) = exp(x)*cosh(x).

Original entry on oeis.org

1, 1, 10, 244, 9288, 483216, 31949216, 2564959552, 242374510720, 26355555496192, 3241906046249472, 445085008158569472, 67469834196870809600, 11192986206960277688320, 2017105871358529382883328, 392394481517424330142203904, 81955683182673295403291541504
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2012

Keywords

Comments

More generally, if A( x/(exp(t*x)*cosh(t*x)) ) = exp(m*x)*cosh(m*x),
then A(x) = Sum_{n>=0} m*(n*t+m)^(n-1) * cosh((n*t+m)*x) * x^n/n!.

Examples

			E.g.f.: A(x) = 1 + x + 10*x^2/2! + 244*x^3/3! + 9288*x^4/4! + 483216*x^5/5! +...
where
A(x) = cosh(x) + 5^0*cosh(5*x)*x + 9^1*cosh(9*x)*x^2/2! + 13^2*cosh(13*x)*x^3/3! + 17^3*cosh(17*x)*x^4/4! + 21^4*cosh(21*x)*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(Egf=1,X=x+x*O(x^n),R=serreverse(x/(exp(4*X)*cosh(4*X)))); Egf=exp(R)*cosh(R); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula derived from a LambertW identity: */
    {a(n)=local(Egf=1,X=x+x*O(x^n)); Egf=sum(k=0,n,(4*k+1)^(k-1)*cosh((4*k+1)*X)*x^k/k!); n!*polcoeff(Egf,n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f.: A(x) = Sum_{n>=0} (4*n+1)^(n-1) * cosh((4*n+1)*x) * x^n/n!.
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( x - 1/4 * LambertW(-4*x * exp(4*x)) ).
a(n) = 1/2 * Sum_{k=0..n} (4*k+1)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + 1/2 * Sum_{k>=0} (4*k+1)^(k-1) * x^k/(1 - (4*k+1)*x)^(k+1). (End)
Showing 1-10 of 13 results. Next