A218300 E.g.f. A(x) satisfies A( x/(exp(x)*cosh(x)) ) = exp(2*x)*cosh(2*x).
1, 2, 12, 104, 1216, 18112, 329600, 7108096, 177549312, 5046554624, 160947232768, 5694342479872, 221410157133824, 9387011838312448, 431051678297358336, 21316106766591721472, 1129526392342026649600, 63855305138514241257472, 3836490516381680506241024
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 104*x^3/3! + 1216*x^4/4! + 18112*x^5/5! +... where A(x) = cosh(2*x) + 2*3^0*cosh(3*x)*x + 2*4^1*cosh(4*x)*x^2/2! + 2*5^2*cosh(5*x)*x^3/3! + 2*6^3*cosh(6*x)*x^4/4! + 2*7^4*cosh(7*x)*x^5/5! +...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..300
- Eric Weisstein's World of Mathematics, Lambert W-Function.
Crossrefs
Programs
-
Mathematica
nmin = 0; nmax = 18; sol = {a[0] -> 1}; nsol = Length[sol]; Do[A[x_] = Sum[a[k] x^k/k!, {k, 0, n}] /. sol; eq = CoefficientList[ A[x/(Exp[x] Cosh[x])] - Exp[2x] Cosh[2x] + O[x]^(n+1), x][[nsol+1;;]] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, nsol+1, nmax}]; a /@ Range[nmin, nmax] /. sol (* Jean-François Alcover, Nov 06 2019 *)
-
PARI
{a(n)=local(Egf=1,X=x+x*O(x^n),R=serreverse(x/(exp(X)*cosh(X)))); Egf=exp(2*R)*cosh(2*R); n!*polcoeff(Egf,n)} for(n=0,25,print1(a(n),", "))
-
PARI
/* Formula derived from a LambertW identity: */ {a(n)=local(Egf=1,X=x+x*O(x^n)); Egf=sum(k=0,n,2*(k+2)^(k-1)*cosh((k+2)*X)*x^k/k!); n!*polcoeff(Egf,n)} for(n=0,25,print1(a(n),", "))
Formula
E.g.f.: A(x) = Sum_{n>=0} 2*(n+2)^(n-1) * cosh((n+2)*x) * x^n/n!.
E.g.f.: A(x) = 1 + Sum_{n>=0} 2*(n+2)^(n-1) * sinh((n+2)*x) * x^n/n!.
a(n) ~ c * n^(n-1) / (exp(n) * (LambertW(exp(-1)))^n), where c = sqrt(1 + LambertW(exp(-1)))/LambertW(exp(-1))^2 = 14.5815783688217906961670551786416446... . - Vaclav Kotesovec, Jul 13 2014, updated Jun 10 2019
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( 2*x - 2*LambertW(-x * exp(x)) ).
a(n) = Sum_{k=0..n} (k+2)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + Sum_{k>=0} (k+2)^(k-1) * x^k/(1 - (k+2)*x)^(k+1). (End)
Comments