A240242 Decimal expansion of Integral_(x=1..c) (log(x)/(1+x))^2 dx, where c = A141251 = e^(LambertW(1/e)+1) corresponds to the maximum of the function.
1, 3, 8, 4, 7, 5, 3, 2, 4, 2, 5, 8, 4, 8, 0, 4, 9, 0, 4, 1, 4, 3, 3, 3, 3, 6, 8, 5, 5, 3, 5, 1, 6, 2, 8, 7, 5, 8, 9, 2, 9, 0, 0, 0, 0, 2, 1, 9, 5, 7, 7, 8, 3, 1, 5, 8, 3, 4, 3, 7, 0, 8, 5, 7, 1, 9, 9, 4, 3, 9, 0, 8, 2, 6, 3, 2, 6, 6, 3, 9, 8, 3, 5, 4, 9, 8, 9, 3, 7, 0, 0, 6, 8, 2, 8, 5, 6, 3, 9, 1
Offset: 0
Examples
0.13847532425848...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Jean-François Alcover, Graphics
Programs
-
Mathematica
w = ProductLog[1/E]; Pi^2/6 - w - w^2 - 2*Log[1+w]*(1+w) + 2*PolyLog[2, -w] // RealDigits[#, 10, 100]& // First
-
PARI
(w -> Pi^2/6 - w - w^2 - 2*(1+w)*log(1+w) + 2*polylog(2, -w))(lambertw(exp(-1))) \\ Charles R Greathouse IV, Aug 27 2014
Comments